![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4bd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necon4bd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | necon2bd 2810 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | notnotr 125 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl6 35 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2795 |
This theorem is referenced by: om00 7655 pw2f1olem 8064 xlt2add 12090 hashfun 13224 hashtpg 13267 fsumcl2lem 14462 fprodcl2lem 14680 gcdeq0 15238 lcmeq0 15313 lcmfeq0b 15343 phibndlem 15475 abvn0b 19302 cfinufil 21732 isxmet2d 22132 i1fres 23472 tdeglem4 23820 ply1domn 23883 pilem2 24206 isnsqf 24861 ppieq0 24902 chpeq0 24933 chteq0 24934 ltrnatlw 35470 bcc0 38539 |
Copyright terms: Public domain | W3C validator |