MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlt2add Structured version   Visualization version   Unicode version

Theorem xlt2add 12090
Description: Extended real version of lt2add 10513. Note that ltleadd 10511, which has weaker assumptions, is not true for the extended reals (since  0  + +oo  <  1  + +oo fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xlt2add  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <  C  /\  B  <  D )  ->  ( A +e B )  <  ( C +e D ) ) )

Proof of Theorem xlt2add
StepHypRef Expression
1 xaddcl 12070 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
213ad2ant1 1082 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  e.  RR* )
32adantr 481 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  e.  RR* )
4 simp1l 1085 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  e.  RR* )
5 simp2r 1088 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  e.  RR* )
6 xaddcl 12070 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  D  e.  RR* )  ->  ( A +e D )  e.  RR* )
74, 5, 6syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e D )  e.  RR* )
87adantr 481 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e D )  e.  RR* )
9 xaddcl 12070 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C +e D )  e.  RR* )
1093ad2ant2 1083 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e D )  e.  RR* )
1110adantr 481 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( C +e D )  e.  RR* )
12 simp3r 1090 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  <  D )
1312adantr 481 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  B  <  D )
14 simp1r 1086 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  e.  RR* )
1514adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR* )
165adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR* )
17 simprl 794 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
18 xltadd2 12087 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  D  e.  RR*  /\  A  e.  RR )  ->  ( B  <  D  <->  ( A +e B )  <  ( A +e D ) ) )
1915, 16, 17, 18syl3anc 1326 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( B  <  D  <->  ( A +e B )  < 
( A +e
D ) ) )
2013, 19mpbid 222 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  <  ( A +e D ) )
21 simp3l 1089 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  <  C )
2221adantr 481 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  <  C )
234adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR* )
24 simp2l 1087 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  e.  RR* )
2524adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR* )
26 simprr 796 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
27 xltadd1 12086 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  D  e.  RR )  ->  ( A  <  C  <->  ( A +e D )  <  ( C +e D ) ) )
2823, 25, 26, 27syl3anc 1326 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A  <  C  <->  ( A +e D )  < 
( C +e
D ) ) )
2922, 28mpbid 222 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e D )  <  ( C +e D ) )
303, 8, 11, 20, 29xrlttrd 11990 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  <  ( C +e D ) )
3130anassrs 680 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  e.  RR )  ->  ( A +e B )  < 
( C +e
D ) )
32 pnfxr 10092 . . . . . . . . . . . 12  |- +oo  e.  RR*
3332a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> +oo  e.  RR* )
34 pnfge 11964 . . . . . . . . . . . 12  |-  ( C  e.  RR*  ->  C  <_ +oo )
3524, 34syl 17 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  <_ +oo )
364, 24, 33, 21, 35xrltletrd 11992 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  < +oo )
37 nltpnft 11995 . . . . . . . . . . . 12  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
3837necon2abid 2836 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  ( A  < +oo  <->  A  =/= +oo )
)
394, 38syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A  < +oo  <->  A  =/= +oo )
)
4036, 39mpbid 222 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  =/= +oo )
41 pnfge 11964 . . . . . . . . . . . 12  |-  ( D  e.  RR*  ->  D  <_ +oo )
425, 41syl 17 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  <_ +oo )
4314, 5, 33, 12, 42xrltletrd 11992 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  < +oo )
44 nltpnft 11995 . . . . . . . . . . . 12  |-  ( B  e.  RR*  ->  ( B  = +oo  <->  -.  B  < +oo ) )
4544necon2abid 2836 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  ( B  < +oo  <->  B  =/= +oo )
)
4614, 45syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( B  < +oo  <->  B  =/= +oo )
)
4743, 46mpbid 222 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  =/= +oo )
48 xaddnepnf 12068 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )
494, 40, 14, 47, 48syl22anc 1327 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  =/= +oo )
50 nltpnft 11995 . . . . . . . . . 10  |-  ( ( A +e B )  e.  RR*  ->  ( ( A +e
B )  = +oo  <->  -.  ( A +e B )  < +oo )
)
5150necon2abid 2836 . . . . . . . . 9  |-  ( ( A +e B )  e.  RR*  ->  ( ( A +e
B )  < +oo  <->  ( A +e B )  =/= +oo ) )
522, 51syl 17 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( ( A +e B )  < +oo  <->  ( A +e B )  =/= +oo ) )
5349, 52mpbird 247 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  < +oo )
5453adantr 481 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( A +e
B )  < +oo )
55 oveq2 6658 . . . . . . 7  |-  ( D  = +oo  ->  ( C +e D )  =  ( C +e +oo ) )
56 mnfxr 10096 . . . . . . . . . . 11  |- -oo  e.  RR*
5756a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  e.  RR* )
58 mnfle 11969 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> -oo  <_  A )
594, 58syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <_  A
)
6057, 4, 24, 59, 21xrlelttrd 11991 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  C
)
61 ngtmnft 11997 . . . . . . . . . . 11  |-  ( C  e.  RR*  ->  ( C  = -oo  <->  -. -oo  <  C ) )
6261necon2abid 2836 . . . . . . . . . 10  |-  ( C  e.  RR*  ->  ( -oo  <  C  <->  C  =/= -oo )
)
6324, 62syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  C  <->  C  =/= -oo )
)
6460, 63mpbid 222 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  =/= -oo )
65 xaddpnf1 12057 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( C +e +oo )  = +oo )
6624, 64, 65syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e +oo )  = +oo )
6755, 66sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( C +e
D )  = +oo )
6854, 67breqtrrd 4681 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( A +e
B )  <  ( C +e D ) )
6968adantlr 751 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  = +oo )  ->  ( A +e B )  < 
( C +e
D ) )
70 mnfle 11969 . . . . . . . . . . 11  |-  ( B  e.  RR*  -> -oo  <_  B )
7114, 70syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <_  B
)
7257, 14, 5, 71, 12xrlelttrd 11991 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  D
)
73 ngtmnft 11997 . . . . . . . . . . 11  |-  ( D  e.  RR*  ->  ( D  = -oo  <->  -. -oo  <  D ) )
7473necon2abid 2836 . . . . . . . . . 10  |-  ( D  e.  RR*  ->  ( -oo  <  D  <->  D  =/= -oo )
)
755, 74syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  D  <->  D  =/= -oo )
)
7672, 75mpbid 222 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  =/= -oo )
7776a1d 25 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -.  ( A +e B )  <  ( C +e D )  ->  D  =/= -oo ) )
7877necon4bd 2814 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( D  = -oo  ->  ( A +e B )  <  ( C +e D ) ) )
7978imp 445 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = -oo )  ->  ( A +e
B )  <  ( C +e D ) )
8079adantlr 751 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  = -oo )  ->  ( A +e B )  < 
( C +e
D ) )
81 elxr 11950 . . . . . 6  |-  ( D  e.  RR*  <->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
825, 81sylib 208 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
8382adantr 481 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  ->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
8431, 69, 80, 83mpjao3dan 1395 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  ->  ( A +e
B )  <  ( C +e D ) )
8540a1d 25 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -.  ( A +e B )  <  ( C +e D )  ->  A  =/= +oo ) )
8685necon4bd 2814 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A  = +oo  ->  ( A +e B )  <  ( C +e D ) ) )
8786imp 445 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = +oo )  ->  ( A +e
B )  <  ( C +e D ) )
88 oveq1 6657 . . . . 5  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
89 xaddmnf2 12060 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
9014, 47, 89syl2anc 693 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo +e B )  = -oo )
9188, 90sylan9eqr 2678 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  ->  ( A +e
B )  = -oo )
92 xaddnemnf 12067 . . . . . . 7  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( C +e D )  =/= -oo )
9324, 64, 5, 76, 92syl22anc 1327 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e D )  =/= -oo )
94 ngtmnft 11997 . . . . . . . 8  |-  ( ( C +e D )  e.  RR*  ->  ( ( C +e
D )  = -oo  <->  -. -oo 
<  ( C +e D ) ) )
9594necon2abid 2836 . . . . . . 7  |-  ( ( C +e D )  e.  RR*  ->  ( -oo  <  ( C +e D )  <-> 
( C +e
D )  =/= -oo ) )
9610, 95syl 17 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  ( C +e
D )  <->  ( C +e D )  =/= -oo ) )
9793, 96mpbird 247 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  ( C +e D ) )
9897adantr 481 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  -> -oo  <  ( C +e D ) )
9991, 98eqbrtrd 4675 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  ->  ( A +e
B )  <  ( C +e D ) )
100 elxr 11950 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1014, 100sylib 208 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
10284, 87, 99, 101mpjao3dan 1395 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  <  ( C +e D ) )
1031023expia 1267 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <  C  /\  B  <  D )  ->  ( A +e B )  <  ( C +e D ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   RRcr 9935   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   +ecxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946  df-xadd 11947
This theorem is referenced by:  bldisj  22203  iscau3  23076  xrofsup  29533  xrge0addgt0  29691
  Copyright terms: Public domain W3C validator