MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfun Structured version   Visualization version   Unicode version

Theorem hashfun 13224
Description: A finite set is a function iff it is equinumerous to its domain. (Contributed by Mario Carneiro, 26-Sep-2013.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
hashfun  |-  ( F  e.  Fin  ->  ( Fun  F  <->  ( # `  F
)  =  ( # `  dom  F ) ) )

Proof of Theorem hashfun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 5918 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 hashfn 13164 . . 3  |-  ( F  Fn  dom  F  -> 
( # `  F )  =  ( # `  dom  F ) )
31, 2sylbi 207 . 2  |-  ( Fun 
F  ->  ( # `  F
)  =  ( # `  dom  F ) )
4 dmfi 8244 . . . . . . . . . . 11  |-  ( F  e.  Fin  ->  dom  F  e.  Fin )
5 hashcl 13147 . . . . . . . . . . 11  |-  ( dom 
F  e.  Fin  ->  (
# `  dom  F )  e.  NN0 )
64, 5syl 17 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( # `
 dom  F )  e.  NN0 )
76nn0red 11352 . . . . . . . . 9  |-  ( F  e.  Fin  ->  ( # `
 dom  F )  e.  RR )
87adantr 481 . . . . . . . 8  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  dom  F
)  e.  RR )
9 df-rel 5121 . . . . . . . . . . . . 13  |-  ( Rel 
F  <->  F  C_  ( _V 
X.  _V ) )
10 dfss3 3592 . . . . . . . . . . . . 13  |-  ( F 
C_  ( _V  X.  _V )  <->  A. x  e.  F  x  e.  ( _V  X.  _V ) )
119, 10bitri 264 . . . . . . . . . . . 12  |-  ( Rel 
F  <->  A. x  e.  F  x  e.  ( _V  X.  _V ) )
1211notbii 310 . . . . . . . . . . 11  |-  ( -. 
Rel  F  <->  -.  A. x  e.  F  x  e.  ( _V  X.  _V )
)
13 rexnal 2995 . . . . . . . . . . 11  |-  ( E. x  e.  F  -.  x  e.  ( _V  X.  _V )  <->  -.  A. x  e.  F  x  e.  ( _V  X.  _V )
)
1412, 13bitr4i 267 . . . . . . . . . 10  |-  ( -. 
Rel  F  <->  E. x  e.  F  -.  x  e.  ( _V  X.  _V ) )
15 dmun 5331 . . . . . . . . . . . . . . . 16  |-  dom  (
( F  \  {
x } )  u. 
{ x } )  =  ( dom  ( F  \  { x }
)  u.  dom  {
x } )
1615fveq2i 6194 . . . . . . . . . . . . . . 15  |-  ( # `  dom  ( ( F 
\  { x }
)  u.  { x } ) )  =  ( # `  ( dom  ( F  \  {
x } )  u. 
dom  { x } ) )
17 dmsnn0 5600 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( _V  X.  _V )  <->  dom  { x }  =/=  (/) )
1817biimpri 218 . . . . . . . . . . . . . . . . . . . 20  |-  ( dom 
{ x }  =/=  (/) 
->  x  e.  ( _V  X.  _V ) )
1918necon1bi 2822 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  x  e.  ( _V 
X.  _V )  ->  dom  { x }  =  (/) )
20193ad2ant3 1084 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  dom  { x }  =  (/) )
2120uneq2d 3767 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( dom  ( F  \  { x }
)  u.  dom  {
x } )  =  ( dom  ( F 
\  { x }
)  u.  (/) ) )
22 un0 3967 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( F  \  {
x } )  u.  (/) )  =  dom  ( F  \  { x } )
2321, 22syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( dom  ( F  \  { x }
)  u.  dom  {
x } )  =  dom  ( F  \  { x } ) )
2423fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  ( dom  ( F  \  {
x } )  u. 
dom  { x } ) )  =  ( # `  dom  ( F  \  { x } ) ) )
2516, 24syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  =  (
# `  dom  ( F 
\  { x }
) ) )
26 diffi 8192 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  Fin  ->  ( F  \  { x }
)  e.  Fin )
27 dmfi 8244 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  \  { x } )  e.  Fin  ->  dom  ( F  \  { x } )  e.  Fin )
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  Fin  ->  dom  ( F  \  { x } )  e.  Fin )
29 hashcl 13147 . . . . . . . . . . . . . . . . . 18  |-  ( dom  ( F  \  {
x } )  e. 
Fin  ->  ( # `  dom  ( F  \  { x } ) )  e. 
NN0 )
3028, 29syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  e.  NN0 )
3130nn0red 11352 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  e.  RR )
32 hashcl 13147 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  e.  Fin  ->  ( # `  ( F  \  { x }
) )  e.  NN0 )
3326, 32syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  e.  NN0 )
3433nn0red 11352 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  e.  RR )
35 peano2re 10209 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  ( F  \  { x } ) )  e.  RR  ->  ( ( # `  ( F  \  { x }
) )  +  1 )  e.  RR )
3634, 35syl 17 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  (
( # `  ( F 
\  { x }
) )  +  1 )  e.  RR )
37 fidomdm 8243 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  e.  Fin  ->  dom  ( F  \  { x } )  ~<_  ( F  \  {
x } ) )
3826, 37syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  dom  ( F  \  { x } )  ~<_  ( F 
\  { x }
) )
39 hashdom 13168 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( F  \  { x } )  e.  Fin  /\  ( F  \  { x }
)  e.  Fin )  ->  ( ( # `  dom  ( F  \  { x } ) )  <_ 
( # `  ( F 
\  { x }
) )  <->  dom  ( F 
\  { x }
)  ~<_  ( F  \  { x } ) ) )
4028, 26, 39syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { x }
) )  <_  ( # `
 ( F  \  { x } ) )  <->  dom  ( F  \  { x } )  ~<_  ( F  \  {
x } ) ) )
4138, 40mpbird 247 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  <_  ( # `  ( F  \  { x }
) ) )
4234ltp1d 10954 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  <  ( (
# `  ( F  \  { x } ) )  +  1 ) )
4331, 34, 36, 41, 42lelttrd 10195 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  <  ( (
# `  ( F  \  { x } ) )  +  1 ) )
44433ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( F  \  { x } ) )  < 
( ( # `  ( F  \  { x }
) )  +  1 ) )
4525, 44eqbrtrd 4675 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  <  (
( # `  ( F 
\  { x }
) )  +  1 ) )
46 snfi 8038 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  Fin
47 incom 3805 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  i^i  {
x } )  =  ( { x }  i^i  ( F  \  {
x } ) )
48 disjdif 4040 . . . . . . . . . . . . . . . . . 18  |-  ( { x }  i^i  ( F  \  { x }
) )  =  (/)
4947, 48eqtri 2644 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { x } )  i^i  {
x } )  =  (/)
50 hashun 13171 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  \  {
x } )  e. 
Fin  /\  { x }  e.  Fin  /\  (
( F  \  {
x } )  i^i 
{ x } )  =  (/) )  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( ( # `  ( F  \  { x }
) )  +  (
# `  { x } ) ) )
5146, 49, 50mp3an23 1416 . . . . . . . . . . . . . . . 16  |-  ( ( F  \  { x } )  e.  Fin  ->  ( # `  (
( F  \  {
x } )  u. 
{ x } ) )  =  ( (
# `  ( F  \  { x } ) )  +  ( # `  { x } ) ) )
5226, 51syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( ( # `  ( F  \  { x }
) )  +  (
# `  { x } ) ) )
53 vex 3203 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
54 hashsng 13159 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  ( # `
 { x }
)  =  1 )
5553, 54ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( # `  { x } )  =  1
5655oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( (
# `  ( F  \  { x } ) )  +  ( # `  { x } ) )  =  ( (
# `  ( F  \  { x } ) )  +  1 )
5752, 56syl6req 2673 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
( # `  ( F 
\  { x }
) )  +  1 )  =  ( # `  ( ( F  \  { x } )  u.  { x }
) ) )
58573ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( ( # `  ( F  \  {
x } ) )  +  1 )  =  ( # `  (
( F  \  {
x } )  u. 
{ x } ) ) )
5945, 58breqtrd 4679 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  <  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) ) )
60 difsnid 4341 . . . . . . . . . . . . . . 15  |-  ( x  e.  F  ->  (
( F  \  {
x } )  u. 
{ x } )  =  F )
6160dmeqd 5326 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  dom  ( ( F  \  { x } )  u.  { x }
)  =  dom  F
)
6261fveq2d 6195 . . . . . . . . . . . . 13  |-  ( x  e.  F  ->  ( # `
 dom  ( ( F  \  { x }
)  u.  { x } ) )  =  ( # `  dom  F ) )
63623ad2ant2 1083 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  =  (
# `  dom  F ) )
6460fveq2d 6195 . . . . . . . . . . . . 13  |-  ( x  e.  F  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( # `  F
) )
65643ad2ant2 1083 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  (
( F  \  {
x } )  u. 
{ x } ) )  =  ( # `  F ) )
6659, 63, 653brtr3d 4684 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  F )  <  ( # `  F ) )
6766rexlimdv3a 3033 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( E. x  e.  F  -.  x  e.  ( _V  X.  _V )  -> 
( # `  dom  F
)  <  ( # `  F
) ) )
6814, 67syl5bi 232 . . . . . . . . 9  |-  ( F  e.  Fin  ->  ( -.  Rel  F  ->  ( # `
 dom  F )  <  ( # `  F
) ) )
6968imp 445 . . . . . . . 8  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  dom  F
)  <  ( # `  F
) )
708, 69gtned 10172 . . . . . . 7  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  F )  =/=  ( # `  dom  F ) )
7170ex 450 . . . . . 6  |-  ( F  e.  Fin  ->  ( -.  Rel  F  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
7271necon4bd 2814 . . . . 5  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  Rel  F ) )
7372imp 445 . . . 4  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  Rel  F )
74 2nalexn 1755 . . . . . . . 8  |-  ( -. 
A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y  -.  A. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
75 df-ne 2795 . . . . . . . . . . . . 13  |-  ( y  =/=  z  <->  -.  y  =  z )
7675anbi2i 730 . . . . . . . . . . . 12  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  -.  y  =  z ) )
77 annim 441 . . . . . . . . . . . 12  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  -.  y  =  z )  <->  -.  (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
7876, 77bitri 264 . . . . . . . . . . 11  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  -.  (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
7978exbii 1774 . . . . . . . . . 10  |-  ( E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  E. z  -.  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
80 exnal 1754 . . . . . . . . . 10  |-  ( E. z  -.  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  -.  A. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
8179, 80bitr2i 265 . . . . . . . . 9  |-  ( -. 
A. z ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )
82812exbii 1775 . . . . . . . 8  |-  ( E. x E. y  -. 
A. z ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y E. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z ) )
8374, 82bitri 264 . . . . . . 7  |-  ( -. 
A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y E. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z ) )
847adantr 481 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  e.  RR )
85 2re 11090 . . . . . . . . . . . . 13  |-  2  e.  RR
86 diffi 8192 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
87 dmfi 8244 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
8886, 87syl 17 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
89 hashcl 13147 . . . . . . . . . . . . . . . 16  |-  ( dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } )  e.  Fin  ->  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  NN0 )
9088, 89syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
9190nn0red 11352 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )
9291adantr 481 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )
93 readdcl 10019 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
9485, 92, 93sylancr 695 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
95 hashcl 13147 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  ( # `
 F )  e. 
NN0 )
9695nn0red 11352 . . . . . . . . . . . . 13  |-  ( F  e.  Fin  ->  ( # `
 F )  e.  RR )
9796adantr 481 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  F
)  e.  RR )
98 1re 10039 . . . . . . . . . . . . . . 15  |-  1  e.  RR
99 readdcl 10019 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
10098, 91, 99sylancr 695 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  e.  RR )
101100adantr 481 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
10285, 91, 93sylancr 695 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  e.  RR )
103102adantr 481 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
104 dmun 5331 . . . . . . . . . . . . . . . . . 18  |-  dom  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  ( dom 
{ <. x ,  y
>. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )
105 opex 4932 . . . . . . . . . . . . . . . . . . . . 21  |-  <. x ,  y >.  e.  _V
106 opex 4932 . . . . . . . . . . . . . . . . . . . . 21  |-  <. x ,  z >.  e.  _V
107105, 106prss 4351 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  <->  { <. x ,  y
>. ,  <. x ,  z >. }  C_  F
)
108 undif 4049 . . . . . . . . . . . . . . . . . . . 20  |-  ( {
<. x ,  y >. ,  <. x ,  z
>. }  C_  F  <->  ( { <. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
109107, 108sylbb 209 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( { <. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
110109dmeqd 5326 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  ( {
<. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  dom  F
)
111104, 110syl5reqr 2671 . . . . . . . . . . . . . . . . 17  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  F  =  ( dom  { <. x ,  y >. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) )
112 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
113 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  z  e. 
_V
114112, 113dmprop 5610 . . . . . . . . . . . . . . . . . . 19  |-  dom  { <. x ,  y >. ,  <. x ,  z
>. }  =  { x ,  x }
115 dfsn2 4190 . . . . . . . . . . . . . . . . . . 19  |-  { x }  =  { x ,  x }
116114, 115eqtr4i 2647 . . . . . . . . . . . . . . . . . 18  |-  dom  { <. x ,  y >. ,  <. x ,  z
>. }  =  { x }
117116uneq1i 3763 . . . . . . . . . . . . . . . . 17  |-  ( dom 
{ <. x ,  y
>. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )
118111, 117syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  F  =  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )
119118fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( # `  dom  F )  =  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
120119ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  =  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
121 hashun2 13172 . . . . . . . . . . . . . . . . 17  |-  ( ( { x }  e.  Fin  /\  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )  -> 
( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
( # `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
12246, 88, 121sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( { x }  u.  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
( # `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
12355oveq1i 6660 . . . . . . . . . . . . . . . 16  |-  ( (
# `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )
124122, 123syl6breq 4694 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( { x }  u.  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
125124adantr 481 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) )  <_  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
126120, 125eqbrtrd 4675 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <_  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
127 1lt2 11194 . . . . . . . . . . . . . . 15  |-  1  <  2
128 ltadd1 10495 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )  -> 
( 1  <  2  <->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) ) )
12998, 85, 91, 128mp3an12i 1428 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  (
1  <  2  <->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) ) )
130127, 129mpbii 223 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
131130adantr 481 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
13284, 101, 103, 126, 131lelttrd 10195 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
133 fidomdm 8243 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) )
13486, 133syl 17 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) )
135 hashdom 13168 . . . . . . . . . . . . . . . . 17  |-  ( ( dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  e. 
Fin  /\  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  e. 
Fin )  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
13688, 86, 135syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
137134, 136mpbird 247 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
138 hashcl 13147 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
13986, 138syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
140139nn0red 11352 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )
141 leadd2 10497 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  ( # `  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  2  e.  RR )  ->  ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
14285, 141mp3an3 1413 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  ( # `  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
14391, 140, 142syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
144137, 143mpbid 222 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <_  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
145144adantr 481 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
146 prfi 8235 . . . . . . . . . . . . . . . . 17  |-  { <. x ,  y >. ,  <. x ,  z >. }  e.  Fin
147 disjdif 4040 . . . . . . . . . . . . . . . . 17  |-  ( {
<. x ,  y >. ,  <. x ,  z
>. }  i^i  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  (/)
148 hashun 13171 . . . . . . . . . . . . . . . . 17  |-  ( ( { <. x ,  y
>. ,  <. x ,  z >. }  e.  Fin  /\  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } )  e.  Fin  /\  ( { <. x ,  y >. ,  <. x ,  z >. }  i^i  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  (/) )  -> 
( # `  ( {
<. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
149146, 147, 148mp3an13 1415 . . . . . . . . . . . . . . . 16  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  ( # `
 ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
15086, 149syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
151150adantr 481 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
152109fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
153152ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
15453, 112opth 4945 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
x ,  y >.  =  <. x ,  z
>. 
<->  ( x  =  x  /\  y  =  z ) )
155154simprbi 480 . . . . . . . . . . . . . . . . . 18  |-  ( <.
x ,  y >.  =  <. x ,  z
>.  ->  y  =  z )
156155necon3i 2826 . . . . . . . . . . . . . . . . 17  |-  ( y  =/=  z  ->  <. x ,  y >.  =/=  <. x ,  z >. )
157 hashprg 13182 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. x ,  y >.  e.  _V  /\  <. x ,  z >.  e.  _V )  ->  ( <. x ,  y >.  =/=  <. x ,  z >.  <->  ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  =  2 ) )
158105, 106, 157mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( <.
x ,  y >.  =/=  <. x ,  z
>. 
<->  ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  =  2 )
159156, 158sylib 208 . . . . . . . . . . . . . . . 16  |-  ( y  =/=  z  ->  ( # `
 { <. x ,  y >. ,  <. x ,  z >. } )  =  2 )
160159oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( y  =/=  z  ->  (
( # `  { <. x ,  y >. ,  <. x ,  z >. } )  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
161160ad2antll 765 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( ( # `  { <. x ,  y
>. ,  <. x ,  z >. } )  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
162151, 153, 1613eqtr3rd 2665 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
163145, 162breqtrd 4679 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  ( # `
 F ) )
16484, 94, 97, 132, 163ltletrd 10197 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <  ( # `  F ) )
16584, 164gtned 10172 . . . . . . . . . 10  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  F
)  =/=  ( # `  dom  F ) )
166165ex 450 . . . . . . . . 9  |-  ( F  e.  Fin  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z )  -> 
( # `  F )  =/=  ( # `  dom  F ) ) )
167166exlimdv 1861 . . . . . . . 8  |-  ( F  e.  Fin  ->  ( E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
168167exlimdvv 1862 . . . . . . 7  |-  ( F  e.  Fin  ->  ( E. x E. y E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
16983, 168syl5bi 232 . . . . . 6  |-  ( F  e.  Fin  ->  ( -.  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
170169necon4bd 2814 . . . . 5  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
171170imp 445 . . . 4  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
172 dffun4 5900 . . . 4  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
17373, 171, 172sylanbrc 698 . . 3  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  Fun  F )
174173ex 450 . 2  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  Fun  F ) )
1753, 174impbid2 216 1  |-  ( F  e.  Fin  ->  ( Fun  F  <->  ( # `  F
)  =  ( # `  dom  F ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    ~<_ cdom 7953   Fincfn 7955   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   2c2 11070   NN0cn0 11292   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  hashres  13225  hashreshashfun  13226  ccatalpha  13375
  Copyright terms: Public domain W3C validator