MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcl2lem Structured version   Visualization version   Unicode version

Theorem fprodcl2lem 14680
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodcllem.1  |-  ( ph  ->  S  C_  CC )
fprodcllem.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
fprodcllem.3  |-  ( ph  ->  A  e.  Fin )
fprodcllem.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
fprodcl2lem.5  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fprodcl2lem  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Distinct variable groups:    A, k, x, y    x, B, y    ph, k, x, y    S, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fprodcl2lem
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . . 4  |-  ( ph  ->  A  =/=  (/) )
21a1d 25 . . 3  |-  ( ph  ->  ( -.  prod_ k  e.  A  B  e.  S  ->  A  =/=  (/) ) )
32necon4bd 2814 . 2  |-  ( ph  ->  ( A  =  (/)  ->  prod_ k  e.  A  B  e.  S )
)
4 prodfc 14675 . . . . . . 7  |-  prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  prod_ k  e.  A  B
5 fveq2 6191 . . . . . . . 8  |-  ( m  =  ( f `  x )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 x ) ) )
6 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
7 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
8 fprodcllem.1 . . . . . . . . . . . . 13  |-  ( ph  ->  S  C_  CC )
98adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  S  C_  CC )
10 fprodcllem.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
119, 10sseldd 3604 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
12 eqid 2622 . . . . . . . . . . 11  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
1311, 12fmptd 6385 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
1413ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
1514adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
16 f1of 6137 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
1716ad2antll 765 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
18 fvco3 6275 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  =  ( ( k  e.  A  |->  B ) `  (
f `  x )
) )
1917, 18sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  =  ( ( k  e.  A  |->  B ) `  (
f `  x )
) )
205, 6, 7, 15, 19fprod 14671 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
214, 20syl5eqr 2670 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) ) )
22 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
236, 22syl6eleq 2711 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
2410, 12fmptd 6385 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> S )
2524adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> S )
26 fco 6058 . . . . . . . . 9  |-  ( ( ( k  e.  A  |->  B ) : A --> S  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> S )
2725, 17, 26syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> S )
2827ffvelrnda 6359 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  e.  S
)
29 fprodcllem.2 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
3029adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x  x.  y )  e.  S )
3123, 28, 30seqcl 12821 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq 1 (  x.  , 
( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) )  e.  S )
3221, 31eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  B  e.  S )
3332expr 643 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  prod_ k  e.  A  B  e.  S )
)
3433exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  B  e.  S
) )
3534expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A  B  e.  S
) )
36 fprodcllem.3 . . 3  |-  ( ph  ->  A  e.  Fin )
37 fz1f1o 14441 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
3836, 37syl 17 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
393, 35, 38mpjaod 396 1  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915    |-> cmpt 4729    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   1c1 9937    x. cmul 9941   NNcn 11020   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fprodcllem  14681
  Copyright terms: Public domain W3C validator