MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinufil Structured version   Visualization version   Unicode version

Theorem cfinufil 21732
Description: An ultrafilter is free iff it contains the Fréchet filter cfinfil 21697 as a subset. (Contributed by NM, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinufil  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =  (/)  <->  { x  e.  ~P X  |  ( X  \  x )  e.  Fin }  C_  F ) )
Distinct variable groups:    x, F    x, X

Proof of Theorem cfinufil
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elpwi 4168 . . . . 5  |-  ( x  e.  ~P X  ->  x  C_  X )
2 ufilb 21710 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  ( -.  x  e.  F  <->  ( X  \  x )  e.  F ) )
32adantr 481 . . . . . . . . 9  |-  ( ( ( F  e.  (
UFil `  X )  /\  x  C_  X )  /\  ( X  \  x )  e.  Fin )  ->  ( -.  x  e.  F  <->  ( X  \  x )  e.  F
) )
4 ufilfil 21708 . . . . . . . . . . . 12  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
54adantr 481 . . . . . . . . . . 11  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  F  e.  ( Fil `  X
) )
6 filfinnfr 21681 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( Fil `  X )  /\  ( X  \  x )  e.  F  /\  ( X 
\  x )  e. 
Fin )  ->  |^| F  =/=  (/) )
763exp 1264 . . . . . . . . . . . 12  |-  ( F  e.  ( Fil `  X
)  ->  ( ( X  \  x )  e.  F  ->  ( ( X  \  x )  e. 
Fin  ->  |^| F  =/=  (/) ) ) )
87com23 86 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  X
)  ->  ( ( X  \  x )  e. 
Fin  ->  ( ( X 
\  x )  e.  F  ->  |^| F  =/=  (/) ) ) )
95, 8syl 17 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
( X  \  x
)  e.  Fin  ->  ( ( X  \  x
)  e.  F  ->  |^| F  =/=  (/) ) ) )
109imp 445 . . . . . . . . 9  |-  ( ( ( F  e.  (
UFil `  X )  /\  x  C_  X )  /\  ( X  \  x )  e.  Fin )  ->  ( ( X 
\  x )  e.  F  ->  |^| F  =/=  (/) ) )
113, 10sylbid 230 . . . . . . . 8  |-  ( ( ( F  e.  (
UFil `  X )  /\  x  C_  X )  /\  ( X  \  x )  e.  Fin )  ->  ( -.  x  e.  F  ->  |^| F  =/=  (/) ) )
1211necon4bd 2814 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  x  C_  X )  /\  ( X  \  x )  e.  Fin )  ->  ( |^| F  =  (/)  ->  x  e.  F ) )
1312ex 450 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
( X  \  x
)  e.  Fin  ->  (
|^| F  =  (/)  ->  x  e.  F ) ) )
1413com23 86 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  ( |^| F  =  (/)  ->  (
( X  \  x
)  e.  Fin  ->  x  e.  F ) ) )
151, 14sylan2 491 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  ~P X )  -> 
( |^| F  =  (/)  ->  ( ( X  \  x )  e.  Fin  ->  x  e.  F ) ) )
1615ralrimdva 2969 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =  (/)  ->  A. x  e.  ~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F ) ) )
174adantr 481 . . . . . . . . . . . 12  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  ->  F  e.  ( Fil `  X ) )
18 uffixsn 21729 . . . . . . . . . . . 12  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  ->  { y }  e.  F )
19 filelss 21656 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  {
y }  e.  F
)  ->  { y }  C_  X )
2017, 18, 19syl2anc 693 . . . . . . . . . . 11  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  ->  { y }  C_  X )
21 dfss4 3858 . . . . . . . . . . 11  |-  ( { y }  C_  X  <->  ( X  \  ( X 
\  { y } ) )  =  {
y } )
2220, 21sylib 208 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( X  \  ( X  \  { y } ) )  =  {
y } )
23 snfi 8038 . . . . . . . . . 10  |-  { y }  e.  Fin
2422, 23syl6eqel 2709 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( X  \  ( X  \  { y } ) )  e.  Fin )
25 difss 3737 . . . . . . . . . . 11  |-  ( X 
\  { y } )  C_  X
26 filtop 21659 . . . . . . . . . . . 12  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
27 elpw2g 4827 . . . . . . . . . . . 12  |-  ( X  e.  F  ->  (
( X  \  {
y } )  e. 
~P X  <->  ( X  \  { y } ) 
C_  X ) )
2817, 26, 273syl 18 . . . . . . . . . . 11  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( ( X  \  { y } )  e.  ~P X  <->  ( X  \  { y } ) 
C_  X ) )
2925, 28mpbiri 248 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( X  \  {
y } )  e. 
~P X )
30 difeq2 3722 . . . . . . . . . . . . 13  |-  ( x  =  ( X  \  { y } )  ->  ( X  \  x )  =  ( X  \  ( X 
\  { y } ) ) )
3130eleq1d 2686 . . . . . . . . . . . 12  |-  ( x  =  ( X  \  { y } )  ->  ( ( X 
\  x )  e. 
Fin 
<->  ( X  \  ( X  \  { y } ) )  e.  Fin ) )
32 eleq1 2689 . . . . . . . . . . . 12  |-  ( x  =  ( X  \  { y } )  ->  ( x  e.  F  <->  ( X  \  { y } )  e.  F ) )
3331, 32imbi12d 334 . . . . . . . . . . 11  |-  ( x  =  ( X  \  { y } )  ->  ( ( ( X  \  x )  e.  Fin  ->  x  e.  F )  <->  ( ( X  \  ( X  \  { y } ) )  e.  Fin  ->  ( X  \  { y } )  e.  F
) ) )
3433rspcv 3305 . . . . . . . . . 10  |-  ( ( X  \  { y } )  e.  ~P X  ->  ( A. x  e.  ~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  (
( X  \  ( X  \  { y } ) )  e.  Fin  ->  ( X  \  {
y } )  e.  F ) ) )
3529, 34syl 17 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( A. x  e. 
~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  (
( X  \  ( X  \  { y } ) )  e.  Fin  ->  ( X  \  {
y } )  e.  F ) ) )
3624, 35mpid 44 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( A. x  e. 
~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  ( X  \  { y } )  e.  F ) )
37 ufilb 21710 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  {
y }  C_  X
)  ->  ( -.  { y }  e.  F  <->  ( X  \  { y } )  e.  F
) )
3820, 37syldan 487 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( -.  { y }  e.  F  <->  ( X  \  { y } )  e.  F ) )
3918pm2.24d 147 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( -.  { y }  e.  F  ->  -.  y  e.  |^| F
) )
4038, 39sylbird 250 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( ( X  \  { y } )  e.  F  ->  -.  y  e.  |^| F ) )
4136, 40syld 47 . . . . . . 7  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( A. x  e. 
~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  -.  y  e.  |^| F ) )
4241impancom 456 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A. x  e.  ~P  X
( ( X  \  x )  e.  Fin  ->  x  e.  F ) )  ->  ( y  e.  |^| F  ->  -.  y  e.  |^| F ) )
4342pm2.01d 181 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A. x  e.  ~P  X
( ( X  \  x )  e.  Fin  ->  x  e.  F ) )  ->  -.  y  e.  |^| F )
4443eq0rdv 3979 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A. x  e.  ~P  X
( ( X  \  x )  e.  Fin  ->  x  e.  F ) )  ->  |^| F  =  (/) )
4544ex 450 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( A. x  e.  ~P  X
( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  |^| F  =  (/) ) )
4616, 45impbid 202 . 2  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =  (/)  <->  A. x  e.  ~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F ) ) )
47 rabss 3679 . 2  |-  ( { x  e.  ~P X  |  ( X  \  x )  e.  Fin } 
C_  F  <->  A. x  e.  ~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F ) )
4846, 47syl6bbr 278 1  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =  (/)  <->  { x  e.  ~P X  |  ( X  \  x )  e.  Fin }  C_  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   |^|cint 4475   ` cfv 5888   Fincfn 7955   Filcfil 21649   UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator