MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashtpg Structured version   Visualization version   Unicode version

Theorem hashtpg 13267
Description: The size of an unordered triple of three different elements. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
hashtpg  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  A
)  <->  ( # `  { A ,  B ,  C } )  =  3 ) )

Proof of Theorem hashtpg
StepHypRef Expression
1 simpl3 1066 . . . . . 6  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  C  e.  W )
2 prfi 8235 . . . . . . 7  |-  { A ,  B }  e.  Fin
32a1i 11 . . . . . 6  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  { A ,  B }  e.  Fin )
4 elprg 4196 . . . . . . . . . . . . . . . 16  |-  ( C  e.  W  ->  ( C  e.  { A ,  B }  <->  ( C  =  A  \/  C  =  B ) ) )
5 orcom 402 . . . . . . . . . . . . . . . . 17  |-  ( ( C  =  A  \/  C  =  B )  <->  ( C  =  B  \/  C  =  A )
)
6 nne 2798 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  B  =/=  C  <->  B  =  C )
7 eqcom 2629 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  C  <->  C  =  B )
86, 7bitr2i 265 . . . . . . . . . . . . . . . . . 18  |-  ( C  =  B  <->  -.  B  =/=  C )
9 nne 2798 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  C  =/=  A  <->  C  =  A )
109bicomi 214 . . . . . . . . . . . . . . . . . 18  |-  ( C  =  A  <->  -.  C  =/=  A )
118, 10orbi12i 543 . . . . . . . . . . . . . . . . 17  |-  ( ( C  =  B  \/  C  =  A )  <->  ( -.  B  =/=  C  \/  -.  C  =/=  A
) )
125, 11bitri 264 . . . . . . . . . . . . . . . 16  |-  ( ( C  =  A  \/  C  =  B )  <->  ( -.  B  =/=  C  \/  -.  C  =/=  A
) )
134, 12syl6bb 276 . . . . . . . . . . . . . . 15  |-  ( C  e.  W  ->  ( C  e.  { A ,  B }  <->  ( -.  B  =/=  C  \/  -.  C  =/=  A ) ) )
1413biimpd 219 . . . . . . . . . . . . . 14  |-  ( C  e.  W  ->  ( C  e.  { A ,  B }  ->  ( -.  B  =/=  C  \/  -.  C  =/=  A
) ) )
15143ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( C  e.  { A ,  B }  ->  ( -.  B  =/= 
C  \/  -.  C  =/=  A ) ) )
1615imp 445 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  C  e.  { A ,  B }
)  ->  ( -.  B  =/=  C  \/  -.  C  =/=  A ) )
1716olcd 408 . . . . . . . . . . 11  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  C  e.  { A ,  B }
)  ->  ( -.  A  =/=  B  \/  ( -.  B  =/=  C  \/  -.  C  =/=  A
) ) )
1817ex 450 . . . . . . . . . 10  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( C  e.  { A ,  B }  ->  ( -.  A  =/= 
B  \/  ( -.  B  =/=  C  \/  -.  C  =/=  A
) ) ) )
19 3orass 1040 . . . . . . . . . 10  |-  ( ( -.  A  =/=  B  \/  -.  B  =/=  C  \/  -.  C  =/=  A
)  <->  ( -.  A  =/=  B  \/  ( -.  B  =/=  C  \/  -.  C  =/=  A
) ) )
2018, 19syl6ibr 242 . . . . . . . . 9  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( C  e.  { A ,  B }  ->  ( -.  A  =/= 
B  \/  -.  B  =/=  C  \/  -.  C  =/=  A ) ) )
21 3ianor 1055 . . . . . . . . 9  |-  ( -.  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  <->  ( -.  A  =/=  B  \/  -.  B  =/=  C  \/  -.  C  =/=  A ) )
2220, 21syl6ibr 242 . . . . . . . 8  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( C  e.  { A ,  B }  ->  -.  ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  A
) ) )
2322con2d 129 . . . . . . 7  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  A
)  ->  -.  C  e.  { A ,  B } ) )
2423imp 445 . . . . . 6  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  -.  C  e.  { A ,  B } )
25 hashunsng 13181 . . . . . . 7  |-  ( C  e.  W  ->  (
( { A ,  B }  e.  Fin  /\ 
-.  C  e.  { A ,  B }
)  ->  ( # `  ( { A ,  B }  u.  { C } ) )  =  ( (
# `  { A ,  B } )  +  1 ) ) )
2625imp 445 . . . . . 6  |-  ( ( C  e.  W  /\  ( { A ,  B }  e.  Fin  /\  -.  C  e.  { A ,  B } ) )  ->  ( # `  ( { A ,  B }  u.  { C } ) )  =  ( (
# `  { A ,  B } )  +  1 ) )
271, 3, 24, 26syl12anc 1324 . . . . 5  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  ( # `
 ( { A ,  B }  u.  { C } ) )  =  ( ( # `  { A ,  B }
)  +  1 ) )
28 simpr1 1067 . . . . . . 7  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  A  =/=  B )
29 3simpa 1058 . . . . . . . . 9  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( A  e.  U  /\  B  e.  V
) )
3029adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  ( A  e.  U  /\  B  e.  V )
)
31 hashprg 13182 . . . . . . . 8  |-  ( ( A  e.  U  /\  B  e.  V )  ->  ( A  =/=  B  <->  (
# `  { A ,  B } )  =  2 ) )
3230, 31syl 17 . . . . . . 7  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  ( A  =/=  B  <->  ( # `  { A ,  B }
)  =  2 ) )
3328, 32mpbid 222 . . . . . 6  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  ( # `
 { A ,  B } )  =  2 )
3433oveq1d 6665 . . . . 5  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  (
( # `  { A ,  B } )  +  1 )  =  ( 2  +  1 ) )
3527, 34eqtrd 2656 . . . 4  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  ( # `
 ( { A ,  B }  u.  { C } ) )  =  ( 2  +  1 ) )
36 df-tp 4182 . . . . 5  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
3736fveq2i 6194 . . . 4  |-  ( # `  { A ,  B ,  C } )  =  ( # `  ( { A ,  B }  u.  { C } ) )
38 df-3 11080 . . . 4  |-  3  =  ( 2  +  1 )
3935, 37, 383eqtr4g 2681 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  ( # `
 { A ,  B ,  C }
)  =  3 )
4039ex 450 . 2  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  A
)  ->  ( # `  { A ,  B ,  C } )  =  3 ) )
41 nne 2798 . . . . . . 7  |-  ( -.  A  =/=  B  <->  A  =  B )
42 hashprlei 13250 . . . . . . . . 9  |-  ( { B ,  C }  e.  Fin  /\  ( # `  { B ,  C } )  <_  2
)
43 prfi 8235 . . . . . . . . . . . . . 14  |-  { B ,  C }  e.  Fin
44 hashcl 13147 . . . . . . . . . . . . . . 15  |-  ( { B ,  C }  e.  Fin  ->  ( # `  { B ,  C }
)  e.  NN0 )
4544nn0zd 11480 . . . . . . . . . . . . . 14  |-  ( { B ,  C }  e.  Fin  ->  ( # `  { B ,  C }
)  e.  ZZ )
4643, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( # `  { B ,  C } )  e.  ZZ
47 2z 11409 . . . . . . . . . . . . 13  |-  2  e.  ZZ
48 zleltp1 11428 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { B ,  C }
)  <_  2  <->  ( # `  { B ,  C }
)  <  ( 2  +  1 ) ) )
49 2p1e3 11151 . . . . . . . . . . . . . . . . 17  |-  ( 2  +  1 )  =  3
5049a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  +  1 )  =  3 )
5150breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { B ,  C }
)  <  ( 2  +  1 )  <->  ( # `  { B ,  C }
)  <  3 ) )
5251biimpd 219 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { B ,  C }
)  <  ( 2  +  1 )  -> 
( # `  { B ,  C } )  <  3 ) )
5348, 52sylbid 230 . . . . . . . . . . . . 13  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { B ,  C }
)  <_  2  ->  (
# `  { B ,  C } )  <  3 ) )
5446, 47, 53mp2an 708 . . . . . . . . . . . 12  |-  ( (
# `  { B ,  C } )  <_ 
2  ->  ( # `  { B ,  C }
)  <  3 )
5544nn0red 11352 . . . . . . . . . . . . . 14  |-  ( { B ,  C }  e.  Fin  ->  ( # `  { B ,  C }
)  e.  RR )
5643, 55ax-mp 5 . . . . . . . . . . . . 13  |-  ( # `  { B ,  C } )  e.  RR
57 3re 11094 . . . . . . . . . . . . 13  |-  3  e.  RR
5856, 57ltnei 10161 . . . . . . . . . . . 12  |-  ( (
# `  { B ,  C } )  <  3  ->  3  =/=  ( # `  { B ,  C } ) )
5954, 58syl 17 . . . . . . . . . . 11  |-  ( (
# `  { B ,  C } )  <_ 
2  ->  3  =/=  ( # `  { B ,  C } ) )
6059necomd 2849 . . . . . . . . . 10  |-  ( (
# `  { B ,  C } )  <_ 
2  ->  ( # `  { B ,  C }
)  =/=  3 )
6160adantl 482 . . . . . . . . 9  |-  ( ( { B ,  C }  e.  Fin  /\  ( # `
 { B ,  C } )  <_  2
)  ->  ( # `  { B ,  C }
)  =/=  3 )
6242, 61mp1i 13 . . . . . . . 8  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( # `  { B ,  C }
)  =/=  3 )
63 tpeq1 4277 . . . . . . . . . . 11  |-  ( A  =  B  ->  { A ,  B ,  C }  =  { B ,  B ,  C } )
64 tpidm12 4290 . . . . . . . . . . 11  |-  { B ,  B ,  C }  =  { B ,  C }
6563, 64syl6req 2673 . . . . . . . . . 10  |-  ( A  =  B  ->  { B ,  C }  =  { A ,  B ,  C } )
6665fveq2d 6195 . . . . . . . . 9  |-  ( A  =  B  ->  ( # `
 { B ,  C } )  =  (
# `  { A ,  B ,  C }
) )
6766neeq1d 2853 . . . . . . . 8  |-  ( A  =  B  ->  (
( # `  { B ,  C } )  =/=  3  <->  ( # `  { A ,  B ,  C } )  =/=  3
) )
6862, 67syl5ib 234 . . . . . . 7  |-  ( A  =  B  ->  (
( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
6941, 68sylbi 207 . . . . . 6  |-  ( -.  A  =/=  B  -> 
( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( # `
 { A ,  B ,  C }
)  =/=  3 ) )
70 hashprlei 13250 . . . . . . . . 9  |-  ( { A ,  C }  e.  Fin  /\  ( # `  { A ,  C } )  <_  2
)
71 prfi 8235 . . . . . . . . . . . . . 14  |-  { A ,  C }  e.  Fin
72 hashcl 13147 . . . . . . . . . . . . . . 15  |-  ( { A ,  C }  e.  Fin  ->  ( # `  { A ,  C }
)  e.  NN0 )
7372nn0zd 11480 . . . . . . . . . . . . . 14  |-  ( { A ,  C }  e.  Fin  ->  ( # `  { A ,  C }
)  e.  ZZ )
7471, 73ax-mp 5 . . . . . . . . . . . . 13  |-  ( # `  { A ,  C } )  e.  ZZ
75 zleltp1 11428 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  C }
)  <_  2  <->  ( # `  { A ,  C }
)  <  ( 2  +  1 ) ) )
7649a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  +  1 )  =  3 )
7776breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  C }
)  <  ( 2  +  1 )  <->  ( # `  { A ,  C }
)  <  3 ) )
7877biimpd 219 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  C }
)  <  ( 2  +  1 )  -> 
( # `  { A ,  C } )  <  3 ) )
7975, 78sylbid 230 . . . . . . . . . . . . 13  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  C }
)  <_  2  ->  (
# `  { A ,  C } )  <  3 ) )
8074, 47, 79mp2an 708 . . . . . . . . . . . 12  |-  ( (
# `  { A ,  C } )  <_ 
2  ->  ( # `  { A ,  C }
)  <  3 )
8172nn0red 11352 . . . . . . . . . . . . . 14  |-  ( { A ,  C }  e.  Fin  ->  ( # `  { A ,  C }
)  e.  RR )
8271, 81ax-mp 5 . . . . . . . . . . . . 13  |-  ( # `  { A ,  C } )  e.  RR
8382, 57ltnei 10161 . . . . . . . . . . . 12  |-  ( (
# `  { A ,  C } )  <  3  ->  3  =/=  ( # `  { A ,  C } ) )
8480, 83syl 17 . . . . . . . . . . 11  |-  ( (
# `  { A ,  C } )  <_ 
2  ->  3  =/=  ( # `  { A ,  C } ) )
8584necomd 2849 . . . . . . . . . 10  |-  ( (
# `  { A ,  C } )  <_ 
2  ->  ( # `  { A ,  C }
)  =/=  3 )
8685adantl 482 . . . . . . . . 9  |-  ( ( { A ,  C }  e.  Fin  /\  ( # `
 { A ,  C } )  <_  2
)  ->  ( # `  { A ,  C }
)  =/=  3 )
8770, 86mp1i 13 . . . . . . . 8  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( # `  { A ,  C }
)  =/=  3 )
88 tpeq2 4278 . . . . . . . . . . 11  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  C ,  C } )
89 tpidm23 4292 . . . . . . . . . . 11  |-  { A ,  C ,  C }  =  { A ,  C }
9088, 89syl6req 2673 . . . . . . . . . 10  |-  ( B  =  C  ->  { A ,  C }  =  { A ,  B ,  C } )
9190fveq2d 6195 . . . . . . . . 9  |-  ( B  =  C  ->  ( # `
 { A ,  C } )  =  (
# `  { A ,  B ,  C }
) )
9291neeq1d 2853 . . . . . . . 8  |-  ( B  =  C  ->  (
( # `  { A ,  C } )  =/=  3  <->  ( # `  { A ,  B ,  C } )  =/=  3
) )
9387, 92syl5ib 234 . . . . . . 7  |-  ( B  =  C  ->  (
( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
946, 93sylbi 207 . . . . . 6  |-  ( -.  B  =/=  C  -> 
( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( # `
 { A ,  B ,  C }
)  =/=  3 ) )
95 hashprlei 13250 . . . . . . . . 9  |-  ( { A ,  B }  e.  Fin  /\  ( # `  { A ,  B } )  <_  2
)
96 hashcl 13147 . . . . . . . . . . . . . . 15  |-  ( { A ,  B }  e.  Fin  ->  ( # `  { A ,  B }
)  e.  NN0 )
9796nn0zd 11480 . . . . . . . . . . . . . 14  |-  ( { A ,  B }  e.  Fin  ->  ( # `  { A ,  B }
)  e.  ZZ )
982, 97ax-mp 5 . . . . . . . . . . . . 13  |-  ( # `  { A ,  B } )  e.  ZZ
99 zleltp1 11428 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  B }
)  <_  2  <->  ( # `  { A ,  B }
)  <  ( 2  +  1 ) ) )
10049a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  +  1 )  =  3 )
101100breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  B }
)  <  ( 2  +  1 )  <->  ( # `  { A ,  B }
)  <  3 ) )
102101biimpd 219 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  B }
)  <  ( 2  +  1 )  -> 
( # `  { A ,  B } )  <  3 ) )
10399, 102sylbid 230 . . . . . . . . . . . . 13  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  B }
)  <_  2  ->  (
# `  { A ,  B } )  <  3 ) )
10498, 47, 103mp2an 708 . . . . . . . . . . . 12  |-  ( (
# `  { A ,  B } )  <_ 
2  ->  ( # `  { A ,  B }
)  <  3 )
10596nn0red 11352 . . . . . . . . . . . . . 14  |-  ( { A ,  B }  e.  Fin  ->  ( # `  { A ,  B }
)  e.  RR )
1062, 105ax-mp 5 . . . . . . . . . . . . 13  |-  ( # `  { A ,  B } )  e.  RR
107106, 57ltnei 10161 . . . . . . . . . . . 12  |-  ( (
# `  { A ,  B } )  <  3  ->  3  =/=  ( # `  { A ,  B } ) )
108104, 107syl 17 . . . . . . . . . . 11  |-  ( (
# `  { A ,  B } )  <_ 
2  ->  3  =/=  ( # `  { A ,  B } ) )
109108necomd 2849 . . . . . . . . . 10  |-  ( (
# `  { A ,  B } )  <_ 
2  ->  ( # `  { A ,  B }
)  =/=  3 )
110109adantl 482 . . . . . . . . 9  |-  ( ( { A ,  B }  e.  Fin  /\  ( # `
 { A ,  B } )  <_  2
)  ->  ( # `  { A ,  B }
)  =/=  3 )
11195, 110mp1i 13 . . . . . . . 8  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( # `  { A ,  B }
)  =/=  3 )
112 tpeq3 4279 . . . . . . . . . . 11  |-  ( C  =  A  ->  { A ,  B ,  C }  =  { A ,  B ,  A } )
113 tpidm13 4291 . . . . . . . . . . 11  |-  { A ,  B ,  A }  =  { A ,  B }
114112, 113syl6req 2673 . . . . . . . . . 10  |-  ( C  =  A  ->  { A ,  B }  =  { A ,  B ,  C } )
115114fveq2d 6195 . . . . . . . . 9  |-  ( C  =  A  ->  ( # `
 { A ,  B } )  =  (
# `  { A ,  B ,  C }
) )
116115neeq1d 2853 . . . . . . . 8  |-  ( C  =  A  ->  (
( # `  { A ,  B } )  =/=  3  <->  ( # `  { A ,  B ,  C } )  =/=  3
) )
117111, 116syl5ib 234 . . . . . . 7  |-  ( C  =  A  ->  (
( A  e.  U  /\  B  e.  V  /\  C  e.  W
)  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
1189, 117sylbi 207 . . . . . 6  |-  ( -.  C  =/=  A  -> 
( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( # `
 { A ,  B ,  C }
)  =/=  3 ) )
11969, 94, 1183jaoi 1391 . . . . 5  |-  ( ( -.  A  =/=  B  \/  -.  B  =/=  C  \/  -.  C  =/=  A
)  ->  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
12021, 119sylbi 207 . . . 4  |-  ( -.  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  ->  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
121120com12 32 . . 3  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( -.  ( A  =/=  B  /\  B  =/=  C  /\  C  =/= 
A )  ->  ( # `
 { A ,  B ,  C }
)  =/=  3 ) )
122121necon4bd 2814 . 2  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( ( # `  { A ,  B ,  C } )  =  3  ->  ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  A
) ) )
12340, 122impbid 202 1  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  A
)  <->  ( # `  { A ,  B ,  C } )  =  3 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    u. cun 3572   {csn 4177   {cpr 4179   {ctp 4181   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   2c2 11070   3c3 11071   ZZcz 11377   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  hashge3el3dif  13268  konigsberglem5  27118  poimirlem9  33418
  Copyright terms: Public domain W3C validator