| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw2f1olem | Structured version Visualization version Unicode version | ||
| Description: Lemma for pw2f1o 8065. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| Ref | Expression |
|---|---|
| pw2f1o.1 |
|
| pw2f1o.2 |
|
| pw2f1o.3 |
|
| pw2f1o.4 |
|
| Ref | Expression |
|---|---|
| pw2f1olem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o.3 |
. . . . . . . . . 10
| |
| 2 | prid2g 4296 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | syl 17 |
. . . . . . . . 9
|
| 4 | pw2f1o.2 |
. . . . . . . . . 10
| |
| 5 | prid1g 4295 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | syl 17 |
. . . . . . . . 9
|
| 7 | 3, 6 | ifcld 4131 |
. . . . . . . 8
|
| 8 | 7 | adantr 481 |
. . . . . . 7
|
| 9 | eqid 2622 |
. . . . . . 7
| |
| 10 | 8, 9 | fmptd 6385 |
. . . . . 6
|
| 11 | 10 | adantr 481 |
. . . . 5
|
| 12 | simprr 796 |
. . . . . 6
| |
| 13 | 12 | feq1d 6030 |
. . . . 5
|
| 14 | 11, 13 | mpbird 247 |
. . . 4
|
| 15 | iftrue 4092 |
. . . . . . . . 9
| |
| 16 | pw2f1o.4 |
. . . . . . . . . . . 12
| |
| 17 | 16 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 18 | iffalse 4095 |
. . . . . . . . . . . 12
| |
| 19 | 18 | neeq1d 2853 |
. . . . . . . . . . 11
|
| 20 | 17, 19 | syl5ibrcom 237 |
. . . . . . . . . 10
|
| 21 | 20 | necon4bd 2814 |
. . . . . . . . 9
|
| 22 | 15, 21 | impbid2 216 |
. . . . . . . 8
|
| 23 | simplrr 801 |
. . . . . . . . . . 11
| |
| 24 | 23 | fveq1d 6193 |
. . . . . . . . . 10
|
| 25 | id 22 |
. . . . . . . . . . 11
| |
| 26 | 3, 6 | ifcld 4131 |
. . . . . . . . . . . 12
|
| 27 | 26 | adantr 481 |
. . . . . . . . . . 11
|
| 28 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 29 | 28 | ifbid 4108 |
. . . . . . . . . . . 12
|
| 30 | 29, 9 | fvmptg 6280 |
. . . . . . . . . . 11
|
| 31 | 25, 27, 30 | syl2anr 495 |
. . . . . . . . . 10
|
| 32 | 24, 31 | eqtrd 2656 |
. . . . . . . . 9
|
| 33 | 32 | eqeq1d 2624 |
. . . . . . . 8
|
| 34 | 22, 33 | bitr4d 271 |
. . . . . . 7
|
| 35 | 34 | pm5.32da 673 |
. . . . . 6
|
| 36 | simprl 794 |
. . . . . . . 8
| |
| 37 | 36 | sseld 3602 |
. . . . . . 7
|
| 38 | 37 | pm4.71rd 667 |
. . . . . 6
|
| 39 | ffn 6045 |
. . . . . . . 8
| |
| 40 | 14, 39 | syl 17 |
. . . . . . 7
|
| 41 | fniniseg 6338 |
. . . . . . 7
| |
| 42 | 40, 41 | syl 17 |
. . . . . 6
|
| 43 | 35, 38, 42 | 3bitr4d 300 |
. . . . 5
|
| 44 | 43 | eqrdv 2620 |
. . . 4
|
| 45 | 14, 44 | jca 554 |
. . 3
|
| 46 | simprr 796 |
. . . . 5
| |
| 47 | cnvimass 5485 |
. . . . . 6
| |
| 48 | fdm 6051 |
. . . . . . 7
| |
| 49 | 48 | ad2antrl 764 |
. . . . . 6
|
| 50 | 47, 49 | syl5sseq 3653 |
. . . . 5
|
| 51 | 46, 50 | eqsstrd 3639 |
. . . 4
|
| 52 | 39 | ad2antrl 764 |
. . . . . 6
|
| 53 | dffn5 6241 |
. . . . . 6
| |
| 54 | 52, 53 | sylib 208 |
. . . . 5
|
| 55 | simplrr 801 |
. . . . . . . . . . 11
| |
| 56 | 55 | eleq2d 2687 |
. . . . . . . . . 10
|
| 57 | fniniseg 6338 |
. . . . . . . . . . . 12
| |
| 58 | 52, 57 | syl 17 |
. . . . . . . . . . 11
|
| 59 | 58 | baibd 948 |
. . . . . . . . . 10
|
| 60 | 56, 59 | bitrd 268 |
. . . . . . . . 9
|
| 61 | 60 | biimpa 501 |
. . . . . . . 8
|
| 62 | iftrue 4092 |
. . . . . . . . 9
| |
| 63 | 62 | adantl 482 |
. . . . . . . 8
|
| 64 | 61, 63 | eqtr4d 2659 |
. . . . . . 7
|
| 65 | simprl 794 |
. . . . . . . . . . . . . 14
| |
| 66 | 65 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
|
| 67 | fvex 6201 |
. . . . . . . . . . . . . 14
| |
| 68 | 67 | elpr 4198 |
. . . . . . . . . . . . 13
|
| 69 | 66, 68 | sylib 208 |
. . . . . . . . . . . 12
|
| 70 | 69 | ord 392 |
. . . . . . . . . . 11
|
| 71 | 70, 60 | sylibrd 249 |
. . . . . . . . . 10
|
| 72 | 71 | con1d 139 |
. . . . . . . . 9
|
| 73 | 72 | imp 445 |
. . . . . . . 8
|
| 74 | iffalse 4095 |
. . . . . . . . 9
| |
| 75 | 74 | adantl 482 |
. . . . . . . 8
|
| 76 | 73, 75 | eqtr4d 2659 |
. . . . . . 7
|
| 77 | 64, 76 | pm2.61dan 832 |
. . . . . 6
|
| 78 | 77 | mpteq2dva 4744 |
. . . . 5
|
| 79 | 54, 78 | eqtrd 2656 |
. . . 4
|
| 80 | 51, 79 | jca 554 |
. . 3
|
| 81 | 45, 80 | impbida 877 |
. 2
|
| 82 | pw2f1o.1 |
. . . 4
| |
| 83 | elpw2g 4827 |
. . . 4
| |
| 84 | 82, 83 | syl 17 |
. . 3
|
| 85 | eleq1 2689 |
. . . . . . 7
| |
| 86 | 85 | ifbid 4108 |
. . . . . 6
|
| 87 | 86 | cbvmptv 4750 |
. . . . 5
|
| 88 | 87 | a1i 11 |
. . . 4
|
| 89 | 88 | eqeq2d 2632 |
. . 3
|
| 90 | 84, 89 | anbi12d 747 |
. 2
|
| 91 | prex 4909 |
. . . 4
| |
| 92 | elmapg 7870 |
. . . 4
| |
| 93 | 91, 82, 92 | sylancr 695 |
. . 3
|
| 94 | 93 | anbi1d 741 |
. 2
|
| 95 | 81, 90, 94 | 3bitr4d 300 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 |
| This theorem is referenced by: pw2f1o 8065 sqff1o 24908 |
| Copyright terms: Public domain | W3C validator |