MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neisspw Structured version   Visualization version   Unicode version

Theorem neisspw 20911
Description: The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neisspw  |-  ( J  e.  Top  ->  (
( nei `  J
) `  S )  C_ 
~P X )

Proof of Theorem neisspw
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21neii1 20910 . . . 4  |-  ( ( J  e.  Top  /\  v  e.  ( ( nei `  J ) `  S ) )  -> 
v  C_  X )
3 selpw 4165 . . . 4  |-  ( v  e.  ~P X  <->  v  C_  X )
42, 3sylibr 224 . . 3  |-  ( ( J  e.  Top  /\  v  e.  ( ( nei `  J ) `  S ) )  -> 
v  e.  ~P X
)
54ex 450 . 2  |-  ( J  e.  Top  ->  (
v  e.  ( ( nei `  J ) `
 S )  -> 
v  e.  ~P X
) )
65ssrdv 3609 1  |-  ( J  e.  Top  ->  (
( nei `  J
) `  S )  C_ 
~P X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ` cfv 5888   Topctop 20698   neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-nei 20902
This theorem is referenced by:  hausflim  21785  flimclslem  21788  fclsfnflim  21831
  Copyright terms: Public domain W3C validator