Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrf Structured version   Visualization version   Unicode version

Theorem ntrf 38421
Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x  |-  X  = 
U. J
ntrrn.i  |-  I  =  ( int `  J
)
Assertion
Ref Expression
ntrf  |-  ( J  e.  Top  ->  I : ~P X --> J )

Proof of Theorem ntrf
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 vpwex 4849 . . . . . 6  |-  ~P s  e.  _V
21inex2 4800 . . . . 5  |-  ( J  i^i  ~P s )  e.  _V
32uniex 6953 . . . 4  |-  U. ( J  i^i  ~P s )  e.  _V
4 eqid 2622 . . . 4  |-  ( s  e.  ~P X  |->  U. ( J  i^i  ~P s ) )  =  ( s  e.  ~P X  |->  U. ( J  i^i  ~P s ) )
53, 4fnmpti 6022 . . 3  |-  ( s  e.  ~P X  |->  U. ( J  i^i  ~P s ) )  Fn 
~P X
6 ntrrn.i . . . . 5  |-  I  =  ( int `  J
)
7 ntrrn.x . . . . . 6  |-  X  = 
U. J
87ntrfval 20828 . . . . 5  |-  ( J  e.  Top  ->  ( int `  J )  =  ( s  e.  ~P X  |->  U. ( J  i^i  ~P s ) ) )
96, 8syl5eq 2668 . . . 4  |-  ( J  e.  Top  ->  I  =  ( s  e. 
~P X  |->  U. ( J  i^i  ~P s ) ) )
109fneq1d 5981 . . 3  |-  ( J  e.  Top  ->  (
I  Fn  ~P X  <->  ( s  e.  ~P X  |-> 
U. ( J  i^i  ~P s ) )  Fn 
~P X ) )
115, 10mpbiri 248 . 2  |-  ( J  e.  Top  ->  I  Fn  ~P X )
127, 6ntrrn 38420 . 2  |-  ( J  e.  Top  ->  ran  I  C_  J )
13 df-f 5892 . 2  |-  ( I : ~P X --> J  <->  ( I  Fn  ~P X  /\  ran  I  C_  J ) )
1411, 12, 13sylanbrc 698 1  |-  ( J  e.  Top  ->  I : ~P X --> J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888   Topctop 20698   intcnt 20821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-ntr 20824
This theorem is referenced by:  ntrf2  38422
  Copyright terms: Public domain W3C validator