MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2fv Structured version   Visualization version   Unicode version

Theorem numclwlk2lem2fv 27237
Description: Value of the function R. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v  |-  V  =  (Vtx `  G )
numclwwlk.q  |-  Q  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n WWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( lastS  `  w )  =/=  v ) } )
numclwwlk.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
numclwwlk.h  |-  H  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =/=  ( w `
 0 ) ) } )
numclwwlk.r  |-  R  =  ( x  e.  ( X H ( N  +  2 ) ) 
|->  ( x substr  <. 0 ,  ( N  + 
1 ) >. )
)
Assertion
Ref Expression
numclwlk2lem2fv  |-  ( ( X  e.  V  /\  N  e.  NN )  ->  ( W  e.  ( X H ( N  +  2 ) )  ->  ( R `  W )  =  ( W substr  <. 0 ,  ( N  +  1 )
>. ) ) )
Distinct variable groups:    n, G, v, w    n, N, v, w    n, V, v   
n, X, v, w   
w, V    v, W, w    x, G, w    x, H    x, N    x, Q    x, V    x, X    x, W
Allowed substitution hints:    Q( w, v, n)    R( x, w, v, n)    F( x, w, v, n)    H( w, v, n)    W( n)

Proof of Theorem numclwlk2lem2fv
StepHypRef Expression
1 numclwwlk.r . . . 4  |-  R  =  ( x  e.  ( X H ( N  +  2 ) ) 
|->  ( x substr  <. 0 ,  ( N  + 
1 ) >. )
)
21a1i 11 . . 3  |-  ( ( ( X  e.  V  /\  N  e.  NN )  /\  W  e.  ( X H ( N  +  2 ) ) )  ->  R  =  ( x  e.  ( X H ( N  + 
2 ) )  |->  ( x substr  <. 0 ,  ( N  +  1 )
>. ) ) )
3 oveq1 6657 . . . 4  |-  ( x  =  W  ->  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  ( W substr  <. 0 ,  ( N  +  1 )
>. ) )
43adantl 482 . . 3  |-  ( ( ( ( X  e.  V  /\  N  e.  NN )  /\  W  e.  ( X H ( N  +  2 ) ) )  /\  x  =  W )  ->  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  ( W substr  <. 0 ,  ( N  +  1 )
>. ) )
5 simpr 477 . . 3  |-  ( ( ( X  e.  V  /\  N  e.  NN )  /\  W  e.  ( X H ( N  +  2 ) ) )  ->  W  e.  ( X H ( N  +  2 ) ) )
6 ovexd 6680 . . 3  |-  ( ( ( X  e.  V  /\  N  e.  NN )  /\  W  e.  ( X H ( N  +  2 ) ) )  ->  ( W substr  <.
0 ,  ( N  +  1 ) >.
)  e.  _V )
72, 4, 5, 6fvmptd 6288 . 2  |-  ( ( ( X  e.  V  /\  N  e.  NN )  /\  W  e.  ( X H ( N  +  2 ) ) )  ->  ( R `  W )  =  ( W substr  <. 0 ,  ( N  +  1 )
>. ) )
87ex 450 1  |-  ( ( X  e.  V  /\  N  e.  NN )  ->  ( W  e.  ( X H ( N  +  2 ) )  ->  ( R `  W )  =  ( W substr  <. 0 ,  ( N  +  1 )
>. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   2c2 11070   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  numclwlk2lem2f1o  27238
  Copyright terms: Public domain W3C validator