| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvocnv | Structured version Visualization version Unicode version | ||
| Description: The converse of an involution is the function itself. (Contributed by Thierry Arnoux, 7-May-2019.) |
| Ref | Expression |
|---|---|
| nvocnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 796 |
. . . . . 6
| |
| 2 | simpll 790 |
. . . . . . 7
| |
| 3 | simprl 794 |
. . . . . . 7
| |
| 4 | 2, 3 | ffvelrnd 6360 |
. . . . . 6
|
| 5 | 1, 4 | eqeltrd 2701 |
. . . . 5
|
| 6 | 1 | fveq2d 6195 |
. . . . . 6
|
| 7 | simplr 792 |
. . . . . . 7
| |
| 8 | fveq2 6191 |
. . . . . . . . . 10
| |
| 9 | 8 | fveq2d 6195 |
. . . . . . . . 9
|
| 10 | id 22 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqeq12d 2637 |
. . . . . . . 8
|
| 12 | 11 | rspcv 3305 |
. . . . . . 7
|
| 13 | 3, 7, 12 | sylc 65 |
. . . . . 6
|
| 14 | 6, 13 | eqtr2d 2657 |
. . . . 5
|
| 15 | 5, 14 | jca 554 |
. . . 4
|
| 16 | simprr 796 |
. . . . . 6
| |
| 17 | simpll 790 |
. . . . . . 7
| |
| 18 | simprl 794 |
. . . . . . 7
| |
| 19 | 17, 18 | ffvelrnd 6360 |
. . . . . 6
|
| 20 | 16, 19 | eqeltrd 2701 |
. . . . 5
|
| 21 | 16 | fveq2d 6195 |
. . . . . 6
|
| 22 | simplr 792 |
. . . . . . 7
| |
| 23 | fveq2 6191 |
. . . . . . . . . 10
| |
| 24 | 23 | fveq2d 6195 |
. . . . . . . . 9
|
| 25 | id 22 |
. . . . . . . . 9
| |
| 26 | 24, 25 | eqeq12d 2637 |
. . . . . . . 8
|
| 27 | 26 | rspcv 3305 |
. . . . . . 7
|
| 28 | 18, 22, 27 | sylc 65 |
. . . . . 6
|
| 29 | 21, 28 | eqtr2d 2657 |
. . . . 5
|
| 30 | 20, 29 | jca 554 |
. . . 4
|
| 31 | 15, 30 | impbida 877 |
. . 3
|
| 32 | 31 | mptcnv 5534 |
. 2
|
| 33 | ffn 6045 |
. . . 4
| |
| 34 | dffn5 6241 |
. . . . . 6
| |
| 35 | 34 | biimpi 206 |
. . . . 5
|
| 36 | 35 | adantr 481 |
. . . 4
|
| 37 | 33, 36 | sylan 488 |
. . 3
|
| 38 | 37 | cnveqd 5298 |
. 2
|
| 39 | dffn5 6241 |
. . . . 5
| |
| 40 | 39 | biimpi 206 |
. . . 4
|
| 41 | 40 | adantr 481 |
. . 3
|
| 42 | 33, 41 | sylan 488 |
. 2
|
| 43 | 32, 38, 42 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
| This theorem is referenced by: mirf1o 25564 lmif1o 25687 |
| Copyright terms: Public domain | W3C validator |