MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvocnv Structured version   Visualization version   Unicode version

Theorem nvocnv 6537
Description: The converse of an involution is the function itself. (Contributed by Thierry Arnoux, 7-May-2019.)
Assertion
Ref Expression
nvocnv  |-  ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  ->  `' F  =  F
)
Distinct variable groups:    x, A    x, F

Proof of Theorem nvocnv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 796 . . . . . 6  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  -> 
y  =  ( F `
 z ) )
2 simpll 790 . . . . . . 7  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  ->  F : A --> A )
3 simprl 794 . . . . . . 7  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  -> 
z  e.  A )
42, 3ffvelrnd 6360 . . . . . 6  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  -> 
( F `  z
)  e.  A )
51, 4eqeltrd 2701 . . . . 5  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  -> 
y  e.  A )
61fveq2d 6195 . . . . . 6  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  -> 
( F `  y
)  =  ( F `
 ( F `  z ) ) )
7 simplr 792 . . . . . . 7  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  ->  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )
8 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
98fveq2d 6195 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  ( F `  x ) )  =  ( F `  ( F `  z )
) )
10 id 22 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
119, 10eqeq12d 2637 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  ( F `  x )
)  =  x  <->  ( F `  ( F `  z
) )  =  z ) )
1211rspcv 3305 . . . . . . 7  |-  ( z  e.  A  ->  ( A. x  e.  A  ( F `  ( F `
 x ) )  =  x  ->  ( F `  ( F `  z ) )  =  z ) )
133, 7, 12sylc 65 . . . . . 6  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  -> 
( F `  ( F `  z )
)  =  z )
146, 13eqtr2d 2657 . . . . 5  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  -> 
z  =  ( F `
 y ) )
155, 14jca 554 . . . 4  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( z  e.  A  /\  y  =  ( F `  z
) ) )  -> 
( y  e.  A  /\  z  =  ( F `  y )
) )
16 simprr 796 . . . . . 6  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  -> 
z  =  ( F `
 y ) )
17 simpll 790 . . . . . . 7  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  ->  F : A --> A )
18 simprl 794 . . . . . . 7  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  -> 
y  e.  A )
1917, 18ffvelrnd 6360 . . . . . 6  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  -> 
( F `  y
)  e.  A )
2016, 19eqeltrd 2701 . . . . 5  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  -> 
z  e.  A )
2116fveq2d 6195 . . . . . 6  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  -> 
( F `  z
)  =  ( F `
 ( F `  y ) ) )
22 simplr 792 . . . . . . 7  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  ->  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )
23 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
2423fveq2d 6195 . . . . . . . . 9  |-  ( x  =  y  ->  ( F `  ( F `  x ) )  =  ( F `  ( F `  y )
) )
25 id 22 . . . . . . . . 9  |-  ( x  =  y  ->  x  =  y )
2624, 25eqeq12d 2637 . . . . . . . 8  |-  ( x  =  y  ->  (
( F `  ( F `  x )
)  =  x  <->  ( F `  ( F `  y
) )  =  y ) )
2726rspcv 3305 . . . . . . 7  |-  ( y  e.  A  ->  ( A. x  e.  A  ( F `  ( F `
 x ) )  =  x  ->  ( F `  ( F `  y ) )  =  y ) )
2818, 22, 27sylc 65 . . . . . 6  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  -> 
( F `  ( F `  y )
)  =  y )
2921, 28eqtr2d 2657 . . . . 5  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  -> 
y  =  ( F `
 z ) )
3020, 29jca 554 . . . 4  |-  ( ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x )  /\  ( y  e.  A  /\  z  =  ( F `  y
) ) )  -> 
( z  e.  A  /\  y  =  ( F `  z )
) )
3115, 30impbida 877 . . 3  |-  ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  -> 
( ( z  e.  A  /\  y  =  ( F `  z
) )  <->  ( y  e.  A  /\  z  =  ( F `  y ) ) ) )
3231mptcnv 5534 . 2  |-  ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  ->  `' ( z  e.  A  |->  ( F `  z ) )  =  ( y  e.  A  |->  ( F `  y
) ) )
33 ffn 6045 . . . 4  |-  ( F : A --> A  ->  F  Fn  A )
34 dffn5 6241 . . . . . 6  |-  ( F  Fn  A  <->  F  =  ( z  e.  A  |->  ( F `  z
) ) )
3534biimpi 206 . . . . 5  |-  ( F  Fn  A  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
3635adantr 481 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  ->  F  =  ( z  e.  A  |->  ( F `
 z ) ) )
3733, 36sylan 488 . . 3  |-  ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  ->  F  =  ( z  e.  A  |->  ( F `
 z ) ) )
3837cnveqd 5298 . 2  |-  ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  ->  `' F  =  `' ( z  e.  A  |->  ( F `  z
) ) )
39 dffn5 6241 . . . . 5  |-  ( F  Fn  A  <->  F  =  ( y  e.  A  |->  ( F `  y
) ) )
4039biimpi 206 . . . 4  |-  ( F  Fn  A  ->  F  =  ( y  e.  A  |->  ( F `  y ) ) )
4140adantr 481 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  ->  F  =  ( y  e.  A  |->  ( F `
 y ) ) )
4233, 41sylan 488 . 2  |-  ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  ->  F  =  ( y  e.  A  |->  ( F `
 y ) ) )
4332, 38, 423eqtr4d 2666 1  |-  ( ( F : A --> A  /\  A. x  e.  A  ( F `  ( F `
 x ) )  =  x )  ->  `' F  =  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    |-> cmpt 4729   `'ccnv 5113    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  mirf1o  25564  lmif1o  25687
  Copyright terms: Public domain W3C validator