| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsnex | Structured version Visualization version Unicode version | ||
| Description: Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| fsnex.1 |
|
| Ref | Expression |
|---|---|
| fsnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsn2g 6405 |
. . . . . . . 8
| |
| 2 | 1 | simprbda 653 |
. . . . . . 7
|
| 3 | 2 | adantrr 753 |
. . . . . 6
|
| 4 | fsnex.1 |
. . . . . . 7
| |
| 5 | 4 | adantl 482 |
. . . . . 6
|
| 6 | simprr 796 |
. . . . . 6
| |
| 7 | 3, 5, 6 | rspcedvd 3317 |
. . . . 5
|
| 8 | 7 | ex 450 |
. . . 4
|
| 9 | 8 | exlimdv 1861 |
. . 3
|
| 10 | 9 | imp 445 |
. 2
|
| 11 | nfv 1843 |
. . . 4
| |
| 12 | nfre1 3005 |
. . . 4
| |
| 13 | 11, 12 | nfan 1828 |
. . 3
|
| 14 | vex 3203 |
. . . . . . . . 9
| |
| 15 | f1osng 6177 |
. . . . . . . . 9
| |
| 16 | 14, 15 | mpan2 707 |
. . . . . . . 8
|
| 17 | 16 | ad3antrrr 766 |
. . . . . . 7
|
| 18 | f1of 6137 |
. . . . . . 7
| |
| 19 | 17, 18 | syl 17 |
. . . . . 6
|
| 20 | simplr 792 |
. . . . . . 7
| |
| 21 | 20 | snssd 4340 |
. . . . . 6
|
| 22 | fss 6056 |
. . . . . 6
| |
| 23 | 19, 21, 22 | syl2anc 693 |
. . . . 5
|
| 24 | fvsng 6447 |
. . . . . . . 8
| |
| 25 | 14, 24 | mpan2 707 |
. . . . . . 7
|
| 26 | 25 | eqcomd 2628 |
. . . . . 6
|
| 27 | 26 | ad3antrrr 766 |
. . . . 5
|
| 28 | snex 4908 |
. . . . . 6
| |
| 29 | feq1 6026 |
. . . . . . 7
| |
| 30 | fveq1 6190 |
. . . . . . . 8
| |
| 31 | 30 | eqeq2d 2632 |
. . . . . . 7
|
| 32 | 29, 31 | anbi12d 747 |
. . . . . 6
|
| 33 | 28, 32 | spcev 3300 |
. . . . 5
|
| 34 | 23, 27, 33 | syl2anc 693 |
. . . 4
|
| 35 | simprl 794 |
. . . . . . 7
| |
| 36 | simpllr 799 |
. . . . . . . . 9
| |
| 37 | simplrr 801 |
. . . . . . . . . 10
| |
| 38 | 37, 4 | syl 17 |
. . . . . . . . 9
|
| 39 | 36, 38 | mpbid 222 |
. . . . . . . 8
|
| 40 | 35, 39 | mpdan 702 |
. . . . . . 7
|
| 41 | 35, 40 | jca 554 |
. . . . . 6
|
| 42 | 41 | ex 450 |
. . . . 5
|
| 43 | 42 | eximdv 1846 |
. . . 4
|
| 44 | 34, 43 | mpd 15 |
. . 3
|
| 45 | simpr 477 |
. . 3
| |
| 46 | 13, 44, 45 | r19.29af 3076 |
. 2
|
| 47 | 10, 46 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |