MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnex Structured version   Visualization version   Unicode version

Theorem fsnex 6538
Description: Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Hypothesis
Ref Expression
fsnex.1  |-  ( x  =  ( f `  A )  ->  ( ps 
<-> 
ph ) )
Assertion
Ref Expression
fsnex  |-  ( A  e.  V  ->  ( E. f ( f : { A } --> D  /\  ph )  <->  E. x  e.  D  ps ) )
Distinct variable groups:    A, f, x    D, f, x    f, V, x    ps, f    ph, x
Allowed substitution hints:    ph( f)    ps( x)

Proof of Theorem fsnex
StepHypRef Expression
1 fsn2g 6405 . . . . . . . 8  |-  ( A  e.  V  ->  (
f : { A }
--> D  <->  ( ( f `
 A )  e.  D  /\  f  =  { <. A ,  ( f `  A )
>. } ) ) )
21simprbda 653 . . . . . . 7  |-  ( ( A  e.  V  /\  f : { A } --> D )  ->  (
f `  A )  e.  D )
32adantrr 753 . . . . . 6  |-  ( ( A  e.  V  /\  ( f : { A } --> D  /\  ph ) )  ->  (
f `  A )  e.  D )
4 fsnex.1 . . . . . . 7  |-  ( x  =  ( f `  A )  ->  ( ps 
<-> 
ph ) )
54adantl 482 . . . . . 6  |-  ( ( ( A  e.  V  /\  ( f : { A } --> D  /\  ph ) )  /\  x  =  ( f `  A ) )  -> 
( ps  <->  ph ) )
6 simprr 796 . . . . . 6  |-  ( ( A  e.  V  /\  ( f : { A } --> D  /\  ph ) )  ->  ph )
73, 5, 6rspcedvd 3317 . . . . 5  |-  ( ( A  e.  V  /\  ( f : { A } --> D  /\  ph ) )  ->  E. x  e.  D  ps )
87ex 450 . . . 4  |-  ( A  e.  V  ->  (
( f : { A } --> D  /\  ph )  ->  E. x  e.  D  ps ) )
98exlimdv 1861 . . 3  |-  ( A  e.  V  ->  ( E. f ( f : { A } --> D  /\  ph )  ->  E. x  e.  D  ps )
)
109imp 445 . 2  |-  ( ( A  e.  V  /\  E. f ( f : { A } --> D  /\  ph ) )  ->  E. x  e.  D  ps )
11 nfv 1843 . . . 4  |-  F/ x  A  e.  V
12 nfre1 3005 . . . 4  |-  F/ x E. x  e.  D  ps
1311, 12nfan 1828 . . 3  |-  F/ x
( A  e.  V  /\  E. x  e.  D  ps )
14 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
15 f1osng 6177 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  e.  _V )  ->  { <. A ,  x >. } : { A }
-1-1-onto-> { x } )
1614, 15mpan2 707 . . . . . . . 8  |-  ( A  e.  V  ->  { <. A ,  x >. } : { A } -1-1-onto-> { x } )
1716ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  { <. A ,  x >. } : { A }
-1-1-onto-> { x } )
18 f1of 6137 . . . . . . 7  |-  ( {
<. A ,  x >. } : { A } -1-1-onto-> {
x }  ->  { <. A ,  x >. } : { A } --> { x } )
1917, 18syl 17 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  { <. A ,  x >. } : { A }
--> { x } )
20 simplr 792 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  x  e.  D )
2120snssd 4340 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  { x }  C_  D )
22 fss 6056 . . . . . 6  |-  ( ( { <. A ,  x >. } : { A }
--> { x }  /\  { x }  C_  D
)  ->  { <. A ,  x >. } : { A } --> D )
2319, 21, 22syl2anc 693 . . . . 5  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  { <. A ,  x >. } : { A }
--> D )
24 fvsng 6447 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  _V )  ->  ( { <. A ,  x >. } `  A
)  =  x )
2514, 24mpan2 707 . . . . . . 7  |-  ( A  e.  V  ->  ( { <. A ,  x >. } `  A )  =  x )
2625eqcomd 2628 . . . . . 6  |-  ( A  e.  V  ->  x  =  ( { <. A ,  x >. } `  A ) )
2726ad3antrrr 766 . . . . 5  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  x  =  ( {
<. A ,  x >. } `
 A ) )
28 snex 4908 . . . . . 6  |-  { <. A ,  x >. }  e.  _V
29 feq1 6026 . . . . . . 7  |-  ( f  =  { <. A ,  x >. }  ->  (
f : { A }
--> D  <->  { <. A ,  x >. } : { A }
--> D ) )
30 fveq1 6190 . . . . . . . 8  |-  ( f  =  { <. A ,  x >. }  ->  (
f `  A )  =  ( { <. A ,  x >. } `  A ) )
3130eqeq2d 2632 . . . . . . 7  |-  ( f  =  { <. A ,  x >. }  ->  (
x  =  ( f `
 A )  <->  x  =  ( { <. A ,  x >. } `  A ) ) )
3229, 31anbi12d 747 . . . . . 6  |-  ( f  =  { <. A ,  x >. }  ->  (
( f : { A } --> D  /\  x  =  ( f `  A ) )  <->  ( { <. A ,  x >. } : { A } --> D  /\  x  =  ( { <. A ,  x >. } `  A ) ) ) )
3328, 32spcev 3300 . . . . 5  |-  ( ( { <. A ,  x >. } : { A }
--> D  /\  x  =  ( { <. A ,  x >. } `  A
) )  ->  E. f
( f : { A } --> D  /\  x  =  ( f `  A ) ) )
3423, 27, 33syl2anc 693 . . . 4  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  E. f ( f : { A } --> D  /\  x  =  ( f `  A ) ) )
35 simprl 794 . . . . . . 7  |-  ( ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  /\  ( f : { A } --> D  /\  x  =  ( f `  A ) ) )  ->  f : { A } --> D )
36 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  /\  ( f : { A } --> D  /\  x  =  ( f `  A ) ) )  /\  f : { A } --> D )  ->  ps )
37 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  /\  ( f : { A } --> D  /\  x  =  ( f `  A ) ) )  /\  f : { A } --> D )  ->  x  =  ( f `  A ) )
3837, 4syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  /\  ( f : { A } --> D  /\  x  =  ( f `  A ) ) )  /\  f : { A } --> D )  -> 
( ps  <->  ph ) )
3936, 38mpbid 222 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  /\  ( f : { A } --> D  /\  x  =  ( f `  A ) ) )  /\  f : { A } --> D )  ->  ph )
4035, 39mpdan 702 . . . . . . 7  |-  ( ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  /\  ( f : { A } --> D  /\  x  =  ( f `  A ) ) )  ->  ph )
4135, 40jca 554 . . . . . 6  |-  ( ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  /\  ( f : { A } --> D  /\  x  =  ( f `  A ) ) )  ->  ( f : { A } --> D  /\  ph ) )
4241ex 450 . . . . 5  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  ( ( f : { A } --> D  /\  x  =  ( f `  A ) )  -> 
( f : { A } --> D  /\  ph ) ) )
4342eximdv 1846 . . . 4  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  ( E. f ( f : { A }
--> D  /\  x  =  ( f `  A
) )  ->  E. f
( f : { A } --> D  /\  ph ) ) )
4434, 43mpd 15 . . 3  |-  ( ( ( ( A  e.  V  /\  E. x  e.  D  ps )  /\  x  e.  D
)  /\  ps )  ->  E. f ( f : { A } --> D  /\  ph ) )
45 simpr 477 . . 3  |-  ( ( A  e.  V  /\  E. x  e.  D  ps )  ->  E. x  e.  D  ps )
4613, 44, 45r19.29af 3076 . 2  |-  ( ( A  e.  V  /\  E. x  e.  D  ps )  ->  E. f ( f : { A } --> D  /\  ph ) )
4710, 46impbida 877 1  |-  ( A  e.  V  ->  ( E. f ( f : { A } --> D  /\  ph )  <->  E. x  e.  D  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177   <.cop 4183   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator