Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcval Structured version   Visualization version   Unicode version

Theorem ofcval 30161
Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1  |-  ( ph  ->  F  Fn  A )
ofcfval.2  |-  ( ph  ->  A  e.  V )
ofcfval.3  |-  ( ph  ->  C  e.  W )
ofcval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  B )
Assertion
Ref Expression
ofcval  |-  ( (
ph  /\  X  e.  A )  ->  (
( F𝑓/𝑐 R C ) `  X
)  =  ( B R C ) )

Proof of Theorem ofcval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofcfval.1 . . . . 5  |-  ( ph  ->  F  Fn  A )
2 ofcfval.2 . . . . 5  |-  ( ph  ->  A  e.  V )
3 ofcfval.3 . . . . 5  |-  ( ph  ->  C  e.  W )
4 eqidd 2623 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
51, 2, 3, 4ofcfval 30160 . . . 4  |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  ( x  e.  A  |->  ( ( F `  x
) R C ) ) )
65adantr 481 . . 3  |-  ( (
ph  /\  X  e.  A )  ->  ( F𝑓/𝑐 R C )  =  ( x  e.  A  |->  ( ( F `  x
) R C ) ) )
7 simpr 477 . . . . 5  |-  ( ( ( ph  /\  X  e.  A )  /\  x  =  X )  ->  x  =  X )
87fveq2d 6195 . . . 4  |-  ( ( ( ph  /\  X  e.  A )  /\  x  =  X )  ->  ( F `  x )  =  ( F `  X ) )
98oveq1d 6665 . . 3  |-  ( ( ( ph  /\  X  e.  A )  /\  x  =  X )  ->  (
( F `  x
) R C )  =  ( ( F `
 X ) R C ) )
10 simpr 477 . . 3  |-  ( (
ph  /\  X  e.  A )  ->  X  e.  A )
11 ovexd 6680 . . 3  |-  ( (
ph  /\  X  e.  A )  ->  (
( F `  X
) R C )  e.  _V )
126, 9, 10, 11fvmptd 6288 . 2  |-  ( (
ph  /\  X  e.  A )  ->  (
( F𝑓/𝑐 R C ) `  X
)  =  ( ( F `  X ) R C ) )
13 ofcval.6 . . 3  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  B )
1413oveq1d 6665 . 2  |-  ( (
ph  /\  X  e.  A )  ->  (
( F `  X
) R C )  =  ( B R C ) )
1512, 14eqtrd 2656 1  |-  ( (
ph  /\  X  e.  A )  ->  (
( F𝑓/𝑐 R C ) `  X
)  =  ( B R C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  ∘𝑓/𝑐cofc 30157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ofc 30158
This theorem is referenced by:  probfinmeasb  30491
  Copyright terms: Public domain W3C validator