HomeHome Metamath Proof Explorer
Theorem List (p. 302 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 30101-30200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremesumeq2sdv 30101* Equality deduction for extended sum. (Contributed by Thierry Arnoux, 25-Dec-2016.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  -> Σ* k  e.  A B  = Σ* k  e.  A C )
 
Theoremnfesum1 30102 Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.)
 |-  F/_ k A   =>    |-  F/_ kΣ* k  e.  A B
 
Theoremnfesum2 30103* Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ xΣ* k  e.  A B
 
Theoremcbvesum 30104* Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.)
 |-  (
 j  =  k  ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- Σ* j  e.  A B  = Σ* k  e.  A C
 
Theoremcbvesumv 30105* Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.)
 |-  (
 j  =  k  ->  B  =  C )   =>    |- Σ* j  e.  A B  = Σ* k  e.  A C
 
Theoremesumid 30106 Identify the extended sum as any limit points of the infinite sum. (Contributed by Thierry Arnoux, 9-May-2017.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  C  e.  ( ( RR*ss  ( 0 [,] +oo )
 ) tsums  ( k  e.  A  |->  B ) ) )   =>    |-  ( ph  -> Σ* k  e.  A B  =  C )
 
Theoremesumgsum 30107 A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  A B  =  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
 
Theoremesumval 30108* Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  x  e.  ( ~P A  i^i  Fin )
 )  ->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  C )   =>    |-  ( ph  -> Σ* k  e.  A B  =  sup ( ran  ( x  e.  ( ~P A  i^i  Fin )  |->  C ) ,  RR* ,  <  ) )
 
Theoremesumel 30109* The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  A B  e.  ( ( RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  A  |->  B ) ) )
 
Theoremesumnul 30110 Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.)
 |- Σ* x  e.  (/) A  =  0
 
Theoremesum0 30111* Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.)
 |-  F/_ k A   =>    |-  ( A  e.  V  -> Σ* k  e.  A 0  =  0 )
 
Theoremesumf1o 30112* Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.)
 |-  F/ n ph   &    |-  F/_ n B   &    |-  F/_ k D   &    |-  F/_ n A   &    |-  F/_ n C   &    |-  F/_ n F   &    |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  A B  = Σ* n  e.  C D )
 
Theoremesumc 30113* Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.)
 |-  F/_ k D   &    |- 
 F/ k ph   &    |-  F/_ k A   &    |-  (
 y  =  C  ->  D  =  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  Fun  `' ( k  e.  A  |->  C ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  W )   =>    |-  ( ph  -> Σ* k  e.  A B  = Σ* y  e.  { z  |  E. k  e.  A  z  =  C } D )
 
Theoremesumrnmpt 30114* Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.)
 |-  F/_ k A   &    |-  ( y  =  B  ->  C  =  D )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  D  e.  ( 0 [,] +oo ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( W  \  { (/)
 } ) )   &    |-  ( ph  -> Disj  k  e.  A  B )   =>    |-  ( ph  -> Σ* y  e.  ran  ( k  e.  A  |->  B ) C  = Σ* k  e.  A D )
 
Theoremesumsplit 30115 Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  F/_ k B   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  C  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  ( A  u.  B ) C  =  (Σ* k  e.  A C +eΣ* k  e.  B C ) )
 
Theoremesummono 30116* Extended sum is monotonic. (Contributed by Thierry Arnoux, 19-Oct-2017.)
 |-  F/ k ph   &    |-  ( ph  ->  C  e.  V )   &    |-  (
 ( ph  /\  k  e.  C )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  A 
 C_  C )   =>    |-  ( ph  -> Σ* k  e.  A B  <_ Σ* k  e.  C B )
 
Theoremesumpad 30117* Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  ( 0 [,] +oo ) )   &    |-  (
 ( ph  /\  k  e.  B )  ->  C  =  0 )   =>    |-  ( ph  -> Σ* k  e.  ( A  u.  B ) C  = Σ* k  e.  A C )
 
Theoremesumpad2 30118* Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  ( 0 [,] +oo ) )   &    |-  (
 ( ph  /\  k  e.  B )  ->  C  =  0 )   =>    |-  ( ph  -> Σ* k  e.  ( A  \  B ) C  = Σ* k  e.  A C )
 
Theoremesumadd 30119* Addition of infinite sums. (Contributed by Thierry Arnoux, 24-Mar-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  A ( B +e C )  =  (Σ* k  e.  A B +eΣ*
 k  e.  A C ) )
 
Theoremesumle 30120* If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  ( 0 [,] +oo ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  <_  C )   =>    |-  ( ph  -> Σ* k  e.  A B  <_ Σ* k  e.  A C )
 
Theoremgsumesum 30121* Relate a group sum on  ( RR*ss  ( 0 [,] +oo ) ) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
 |-  F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  ->  (
 ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  = Σ* k  e.  A B )
 
Theoremesumlub 30122* The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
 |-  F/ k ph   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  X  e.  RR* )   &    |-  ( ph  ->  X  < Σ* k  e.  A B )   =>    |-  ( ph  ->  E. a  e.  ( ~P A  i^i  Fin ) X  < Σ* k  e.  a B )
 
Theoremesumaddf 30123* Addition of infinite sums. (Contributed by Thierry Arnoux, 22-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  A ( B +e C )  =  (Σ* k  e.  A B +eΣ*
 k  e.  A C ) )
 
Theoremesumlef 30124* If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  ( 0 [,] +oo ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  <_  C )   =>    |-  ( ph  -> Σ* k  e.  A B  <_ Σ* k  e.  A C )
 
Theoremesumcst 30125* The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.)
 |-  F/_ k A   &    |-  F/_ k B   =>    |-  ( ( A  e.  V  /\  B  e.  (
 0 [,] +oo ) ) 
 -> Σ* k  e.  A B  =  ( ( # `  A ) xe B ) )
 
Theoremesumsnf 30126* The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.)
 |-  F/_ k B   &    |-  ( ( ph  /\  k  =  M )  ->  A  =  B )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  B  e.  (
 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  { M } A  =  B )
 
Theoremesumsn 30127* The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Shortened by Thierry Arnoux, 2-May-2020.)
 |-  (
 ( ph  /\  k  =  M )  ->  A  =  B )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  B  e.  (
 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  { M } A  =  B )
 
Theoremesumpr 30128* Extended sum over a pair. (Contributed by Thierry Arnoux, 2-Jan-2017.)
 |-  (
 ( ph  /\  k  =  A )  ->  C  =  D )   &    |-  ( ( ph  /\  k  =  B ) 
 ->  C  =  E )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  D  e.  (
 0 [,] +oo ) )   &    |-  ( ph  ->  E  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  -> Σ* k  e. 
 { A ,  B } C  =  ( D +e E ) )
 
Theoremesumpr2 30129* Extended sum over a pair, with a relaxed condition compared to esumpr 30128. (Contributed by Thierry Arnoux, 2-Jan-2017.)
 |-  (
 ( ph  /\  k  =  A )  ->  C  =  D )   &    |-  ( ( ph  /\  k  =  B ) 
 ->  C  =  E )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  D  e.  (
 0 [,] +oo ) )   &    |-  ( ph  ->  E  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  ( A  =  B  ->  ( D  =  0  \/  D  = +oo )
 ) )   =>    |-  ( ph  -> Σ* k  e.  { A ,  B } C  =  ( D +e E ) )
 
Theoremesumrnmpt2 30130* Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 30-May-2020.)
 |-  (
 y  =  B  ->  C  =  D )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  D  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  W )   &    |-  ( ( ( ph  /\  k  e.  A ) 
 /\  B  =  (/) )  ->  D  =  0 )   &    |-  ( ph  -> Disj  k  e.  A  B )   =>    |-  ( ph  -> Σ* y  e. 
 ran  ( k  e.  A  |->  B ) C  = Σ* k  e.  A D )
 
Theoremesumfzf 30131* Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
 |-  F/_ k F   =>    |-  ( ( F : NN
 --> ( 0 [,] +oo )  /\  N  e.  NN )  -> Σ* k  e.  ( 1
 ... N ) ( F `  k )  =  (  seq 1
 ( +e ,  F ) `  N ) )
 
Theoremesumfsup 30132 Formulating an extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
 |-  F/_ k F   =>    |-  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  NN ( F `  k )  = 
 sup ( ran  seq 1 ( +e ,  F ) ,  RR* ,  <  ) )
 
Theoremesumfsupre 30133 Formulating an extended sum over integers using the recursive sequence builder. This version is limited to real valued functions. (Contributed by Thierry Arnoux, 19-Oct-2017.)
 |-  F/_ k F   =>    |-  ( F : NN --> ( 0 [,) +oo )  -> Σ* k  e.  NN ( F `  k )  = 
 sup ( ran  seq 1 (  +  ,  F ) ,  RR* ,  <  ) )
 
Theoremesumss 30134 Change the index set to a subset by adding zeroes. (Contributed by Thierry Arnoux, 19-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  F/_ k B   &    |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  B  e.  V )   &    |-  (
 ( ph  /\  k  e.  B )  ->  C  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  ( B 
 \  A ) ) 
 ->  C  =  0 )   =>    |-  ( ph  -> Σ* k  e.  A C  = Σ* k  e.  B C )
 
Theoremesumpinfval 30135* The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.)
 |-  F/ k ph   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  E. k  e.  A  B  = +oo )   =>    |-  ( ph  -> Σ* k  e.  A B  = +oo )
 
Theoremesumpfinvallem 30136 Lemma for esumpfinval 30137. (Contributed by Thierry Arnoux, 28-Jun-2017.)
 |-  (
 ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  (fld  gsumg  F )  =  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg 
 F ) )
 
Theoremesumpfinval 30137* The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,) +oo ) )   =>    |-  ( ph  -> Σ* k  e.  A B  =  sum_ k  e.  A  B )
 
Theoremesumpfinvalf 30138 Same as esumpfinval 30137, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.)
 |-  F/_ k A   &    |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,) +oo ) )   =>    |-  ( ph  -> Σ* k  e.  A B  =  sum_ k  e.  A  B )
 
Theoremesumpinfsum 30139* The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k A   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  -.  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ( 0 [,] +oo ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  M  <_  B )   &    |-  ( ph  ->  M  e.  RR* )   &    |-  ( ph  ->  0  <  M )   =>    |-  ( ph  -> Σ* k  e.  A B  = +oo )
 
Theoremesumpcvgval 30140* The value of the extended sum when the corresponding series sum is convergent. (Contributed by Thierry Arnoux, 31-Jul-2017.)
 |-  (
 ( ph  /\  k  e. 
 NN )  ->  A  e.  ( 0 [,) +oo ) )   &    |-  ( k  =  l  ->  A  =  B )   &    |-  ( ph  ->  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A )  e.  dom  ~~>  )   =>    |-  ( ph  -> Σ* k  e.  NN A  =  sum_ k  e. 
 NN  A )
 
Theoremesumpmono 30141* The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,) +oo ) )   =>    |-  ( ph  -> Σ* k  e.  (
 1 ... M ) A 
 <_ Σ* k  e.  ( 1 ... N ) A )
 
Theoremesumcocn 30142* Lemma for esummulc2 30144 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.)
 |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
 )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  C  e.  ( J  Cn  J ) )   &    |-  ( ph  ->  ( C `  0 )  =  0 )   &    |-  ( ( ph  /\  x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo ) )  ->  ( C `
  ( x +e y ) )  =  ( ( C `
  x ) +e ( C `  y ) ) )   =>    |-  ( ph  ->  ( C ` Σ* k  e.  A B )  = Σ* k  e.  A ( C `  B ) )
 
Theoremesummulc1 30143* An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   =>    |-  ( ph  ->  (Σ* k  e.  A B xe C )  = Σ* k  e.  A ( B xe C ) )
 
Theoremesummulc2 30144* An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   =>    |-  ( ph  ->  ( C xeΣ* k  e.  A B )  = Σ* k  e.  A ( C xe B ) )
 
Theoremesumdivc 30145* An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (Σ* k  e.  A B /𝑒  C )  = Σ* k  e.  A ( B /𝑒  C )
 )
 
Theoremhashf2 30146 Lemma for hasheuni 30147. (Contributed by Thierry Arnoux, 19-Nov-2016.)
 |-  # : _V --> ( 0 [,] +oo )
 
Theoremhasheuni 30147* The cardinality of a disjoint union, not necessarily finite. cf. hashuni 14558. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.)
 |-  (
 ( A  e.  V  /\ Disj 
 x  e.  A  x )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x ) )
 
Theoremesumcvg 30148* The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 14458. (Contributed by Thierry Arnoux, 5-Sep-2017.)
 |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )   &    |-  F  =  ( n  e.  NN  |-> Σ*
 k  e.  ( 1
 ... n ) A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )   &    |-  (
 k  =  m  ->  A  =  B )   =>    |-  ( ph  ->  F ( ~~> t `  J )Σ* k  e.  NN A )
 
Theoremesumcvg2 30149* Simpler version of esumcvg 30148. (Contributed by Thierry Arnoux, 5-Sep-2017.)
 |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )   &    |-  ( ( ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )   &    |-  ( k  =  l  ->  A  =  B )   &    |-  ( k  =  m  ->  A  =  C )   =>    |-  ( ph  ->  ( n  e.  NN  |-> Σ* k  e.  (
 1 ... n ) A ) ( ~~> t `  J )Σ* k  e.  NN A )
 
Theoremesumcvgsum 30150* The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.)
 |-  (
 k  =  i  ->  A  =  B )   &    |-  (
 ( ph  /\  k  e. 
 NN )  ->  A  e.  ( 0 [,) +oo ) )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k
 )  =  A )   &    |-  ( ph  ->  seq 1
 (  +  ,  F ) 
 ~~>  L )   &    |-  ( ph  ->  L  e.  RR )   =>    |-  ( ph  -> Σ* k  e. 
 NN A  =  sum_ k  e.  NN  A )
 
Theoremesumsup 30151* Express an extended sum as a supremum of extended sums. (Contributed by Thierry Arnoux, 24-May-2020.)
 |-  ( ph  ->  B  e.  (
 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  NN A  =  sup ( ran  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A ) ,  RR* ,  <  ) )
 
Theoremesumgect 30152* "Send  n to +oo " in an inequality with an extended sum. (Contributed by Thierry Arnoux, 24-May-2020.)
 |-  ( ph  ->  B  e.  (
 0 [,] +oo ) )   &    |-  ( ( ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )   &    |-  ( ( ph  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  <_  B )   =>    |-  ( ph  -> Σ* k  e.  NN A  <_  B )
 
Theoremesumcvgre 30153* All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019.)
 |-  F/ k ph   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   &    |-  ( ph  -> Σ* k  e.  A B  e.  RR )   =>    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  RR )
 
Theoremesum2dlem 30154* Lemma for esum2d 30155 (finite case). (Contributed by Thierry Arnoux, 17-May-2020.) (Proof shortened by AV, 17-Sep-2021.)
 |-  F/_ k F   &    |-  ( z  =  <. j ,  k >.  ->  F  =  C )   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  W )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  ( 0 [,] +oo ) )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  -> Σ* j  e.  AΣ* k  e.  B C  = Σ* z  e.  U_ j  e.  A  ( { j }  X.  B ) F )
 
Theoremesum2d 30155* Write a double extended sum as a sum over a two-dimensional region. Note that  B ( j ) is a function of  j. This can be seen as "slicing" the relation  A. (Contributed by Thierry Arnoux, 17-May-2020.)
 |-  F/_ k F   &    |-  ( z  =  <. j ,  k >.  ->  F  =  C )   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  W )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* j  e.  AΣ* k  e.  B C  = Σ* z  e.  U_ j  e.  A  ( { j }  X.  B ) F )
 
Theoremesumiun 30156* Sum over a non necessarily disjoint indexed union. The inegality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  j  e.  A )  ->  B  e.  W )   &    |-  ( ( (
 ph  /\  j  e.  A )  /\  k  e.  B )  ->  C  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  -> Σ* k  e.  U_ j  e.  A  B C  <_ Σ* j  e.  AΣ* k  e.  B C )
 
20.3.15  Mixed Function/Constant operation
 
Syntaxcofc 30157 Extend class notation to include mapping of an operation to an operation for a function and a constant.
 class𝑓/𝑐 R
 
Definitiondf-ofc 30158* Define the function/constant operation map. The definition is designed so that if  R is a binary operation, then ∘𝑓/𝑐 R is the analogous operation on functions and constants. (Contributed by Thierry Arnoux, 21-Jan-2017.)
 |-𝑓/𝑐 R  =  ( f  e.  _V ,  c  e. 
 _V  |->  ( x  e. 
 dom  f  |->  ( ( f `  x ) R c ) ) )
 
Theoremofceq 30159 Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017.)
 |-  ( R  =  S  ->𝑓/𝑐 R  =𝑓/𝑐 S )
 
Theoremofcfval 30160* Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  =  B )   =>    |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  ( x  e.  A  |->  ( B R C ) ) )
 
Theoremofcval 30161 Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   &    |-  (
 ( ph  /\  X  e.  A )  ->  ( F `
  X )  =  B )   =>    |-  ( ( ph  /\  X  e.  A )  ->  (
 ( F𝑓/𝑐 R C ) `  X )  =  ( B R C ) )
 
Theoremofcfn 30162 The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   =>    |-  ( ph  ->  ( F𝑓/𝑐 R C )  Fn  A )
 
Theoremofcfeqd2 30163* Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  e.  B )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  ( y R C )  =  ( y P C ) )   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   =>    |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  ( F𝑓/𝑐 P C ) )
 
Theoremofcfval3 30164* General value of  ( F𝑓/𝑐 R C ) with no assumptions on functionality of  F. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  (
 ( F  e.  V  /\  C  e.  W ) 
 ->  ( F𝑓/𝑐 R C )  =  ( x  e.  dom  F  |->  ( ( F `  x ) R C ) ) )
 
Theoremofcf 30165* The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.)
 |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  T ) )  ->  ( x R y )  e.  U )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  T )   =>    |-  ( ph  ->  ( F𝑓/𝑐 R C ) : A --> U )
 
Theoremofcfval2 30166* The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  X )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   =>    |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  ( x  e.  A  |->  ( B R C ) ) )
 
Theoremofcfval4 30167* The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   =>    |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  (
 ( x  e.  B  |->  ( x R C ) )  o.  F ) )
 
Theoremofcc 30168 Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   =>    |-  ( ph  ->  ( ( A  X.  { B } )𝑓/𝑐 R C )  =  ( A  X.  { ( B R C ) }
 ) )
 
Theoremofcof 30169 Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   =>    |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  ( F  oF R ( A  X.  { C } ) ) )
 
20.3.16  Abstract measure
 
20.3.16.1  Sigma-Algebra
 
Syntaxcsiga 30170 Extend class notation to include the function giving the sigma-algebras on a given base set.
 class sigAlgebra
 
Definitiondf-siga 30171* Define a sigma-algebra, i.e. a set closed under complement and countable union. Literature usually uses capital greek sigma and omega letters for the algebra set, and the base set respectively. We are using  S and  O as a parallel. (Contributed by Thierry Arnoux, 3-Sep-2016.)
 |- sigAlgebra  =  ( o  e.  _V  |->  { s  |  ( s 
 C_  ~P o  /\  (
 o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
 ( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
 
Theoremsigaex 30172* Lemma for issiga 30174 and isrnsiga 30176. The class of sigma-algebras with base set  o is a set. Note: a more generic version with  ( O  e. 
_V  ->  ... ) could be useful for sigaval 30173. (Contributed by Thierry Arnoux, 24-Oct-2016.)
 |-  { s  |  ( s  C_  ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
 ( x  ~<_  om  ->  U. x  e.  s ) ) ) }  e.  _V
 
Theoremsigaval 30173* The set of sigma-algebra with a given base set. (Contributed by Thierry Arnoux, 23-Sep-2016.)
 |-  ( O  e.  _V  ->  (sigAlgebra `  O )  =  {
 s  |  ( s 
 C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e.  ~P  s
 ( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
 
Theoremissiga 30174* An alternative definition of the sigma-algebra, for a given base set. (Contributed by Thierry Arnoux, 19-Sep-2016.)
 |-  ( S  e.  _V  ->  ( S  e.  (sigAlgebra `  O ) 
 <->  ( S  C_  ~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
 
TheoremisrnsigaOLD 30175* The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V 
 /\  E. o ( S 
 C_  ~P o  /\  (
 o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
 
Theoremisrnsiga 30176* The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (Proof shortened by Thierry Arnoux, 23-Oct-2016.)
 |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V 
 /\  E. o ( S 
 C_  ~P o  /\  (
 o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
 
Theorem0elsiga 30177 A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.)
 |-  ( S  e.  U. ran sigAlgebra  ->  (/)  e.  S )
 
Theorembaselsiga 30178 A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016.)
 |-  ( S  e.  (sigAlgebra `  A )  ->  A  e.  S )
 
Theoremsigasspw 30179 A sigma-algebra is a set of subset of the base set. (Contributed by Thierry Arnoux, 18-Jan-2017.)
 |-  ( S  e.  (sigAlgebra `  A )  ->  S  C_  ~P A )
 
Theoremsigaclcu 30180 A sigma-algebra is closed under countable union. (Contributed by Thierry Arnoux, 26-Dec-2016.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A  e.  ~P S  /\  A  ~<_  om )  ->  U. A  e.  S )
 
Theoremsigaclcuni 30181* A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.)
 |-  F/_ k A   =>    |-  ( ( S  e.  U.
 ran sigAlgebra  /\  A. k  e.  A  B  e.  S  /\  A  ~<_  om )  ->  U_ k  e.  A  B  e.  S )
 
Theoremsigaclfu 30182 A sigma-algebra is closed under finite union. (Contributed by Thierry Arnoux, 28-Dec-2016.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A  e.  ~P S  /\  A  e.  Fin )  ->  U. A  e.  S )
 
Theoremsigaclcu2 30183* A sigma-algebra is closed under countable union - indexing on  NN (Contributed by Thierry Arnoux, 29-Dec-2016.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A. k  e.  NN  A  e.  S )  -> 
 U_ k  e.  NN  A  e.  S )
 
Theoremsigaclfu2 30184* A sigma-algebra is closed under finite union - indexing on  ( 1..^ N ). (Contributed by Thierry Arnoux, 28-Dec-2016.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A. k  e.  (
 1..^ N ) A  e.  S )  ->  U_ k  e.  ( 1..^ N ) A  e.  S )
 
Theoremsigaclcu3 30185* A sigma-algebra is closed under countable or finite union. (Contributed by Thierry Arnoux, 6-Mar-2017.)
 |-  ( ph  ->  S  e.  U. ran sigAlgebra )   &    |-  ( ph  ->  ( N  =  NN  \/  N  =  ( 1..^ M ) ) )   &    |-  ( ( ph  /\  k  e.  N )  ->  A  e.  S )   =>    |-  ( ph  ->  U_ k  e.  N  A  e.  S )
 
Theoremissgon 30186 Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016.) (Revised by Thierry Arnoux, 23-Oct-2016.)
 |-  ( S  e.  (sigAlgebra `  O ) 
 <->  ( S  e.  U. ran sigAlgebra  /\  O  =  U. S ) )
 
Theoremsgon 30187 A sigma-algebra is a sigma on its union set. (Contributed by Thierry Arnoux, 6-Jun-2017.)
 |-  ( S  e.  U. ran sigAlgebra  ->  S  e.  (sigAlgebra `  U. S ) )
 
Theoremelsigass 30188 An element of a sigma-algebra is a subset of the base set. (Contributed by Thierry Arnoux, 6-Jun-2017.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A  e.  S ) 
 ->  A  C_  U. S )
 
Theoremelrnsiga 30189 Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.)
 |-  ( S  e.  (sigAlgebra `  O )  ->  S  e.  U. ran sigAlgebra )
 
Theoremisrnsigau 30190* The property of being a sigma-algebra, universe is the union set. (Contributed by Thierry Arnoux, 11-Nov-2016.)
 |-  ( S  e.  U. ran sigAlgebra  ->  ( S  C_  ~P U. S  /\  ( U. S  e.  S  /\  A. x  e.  S  ( U. S  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
 ->  U. x  e.  S ) ) ) )
 
Theoremunielsiga 30191 A sigma-algebra contains its universe set. (Contributed by Thierry Arnoux, 13-Feb-2017.) (Shortened by Thierry Arnoux, 6-Jun-2017.)
 |-  ( S  e.  U. ran sigAlgebra  ->  U. S  e.  S )
 
Theoremdmvlsiga 30192 Lebesgue-measurable subsets of  RR form a sigma-algebra. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
 |-  dom  vol 
 e.  (sigAlgebra `  RR )
 
Theorempwsiga 30193 Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
 |-  ( O  e.  V  ->  ~P O  e.  (sigAlgebra `  O ) )
 
Theoremprsiga 30194 The smallest possible sigma-algebra containing  O. (Contributed by Thierry Arnoux, 13-Sep-2016.)
 |-  ( O  e.  V  ->  { (/) ,  O }  e.  (sigAlgebra `
  O ) )
 
Theoremsigaclci 30195 A sigma-algebra is closed under countable intersections. Deduction version. (Contributed by Thierry Arnoux, 19-Sep-2016.)
 |-  (
 ( ( S  e.  U.
 ran sigAlgebra  /\  A  e.  ~P S )  /\  ( A  ~<_ 
 om  /\  A  =/=  (/) ) )  ->  |^| A  e.  S )
 
Theoremdifelsiga 30196 A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A  e.  S  /\  B  e.  S )  ->  ( A  \  B )  e.  S )
 
Theoremunelsiga 30197 A sigma-algebra is closed under pairwise unions. (Contributed by Thierry Arnoux, 13-Dec-2016.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A  e.  S  /\  B  e.  S )  ->  ( A  u.  B )  e.  S )
 
Theoreminelsiga 30198 A sigma-algebra is closed under pairwise intersections. (Contributed by Thierry Arnoux, 13-Dec-2016.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A  e.  S  /\  B  e.  S )  ->  ( A  i^i  B )  e.  S )
 
Theoremsigainb 30199 Building a sigma-algebra from intersections with a given set. (Contributed by Thierry Arnoux, 26-Dec-2016.)
 |-  (
 ( S  e.  U. ran sigAlgebra  /\  A  e.  S ) 
 ->  ( S  i^i  ~P A )  e.  (sigAlgebra `  A ) )
 
Theoreminsiga 30200 The intersection of a collection of sigma-algebras of same base is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
 |-  (
 ( A  =/=  (/)  /\  A  e.  ~P (sigAlgebra `  O ) ) 
 ->  |^| A  e.  (sigAlgebra `  O ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >