Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval Structured version   Visualization version   Unicode version

Theorem ofcfval 30160
Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1  |-  ( ph  ->  F  Fn  A )
ofcfval.2  |-  ( ph  ->  A  e.  V )
ofcfval.3  |-  ( ph  ->  C  e.  W )
ofcfval.6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Assertion
Ref Expression
ofcfval  |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  ( x  e.  A  |->  ( B R C ) ) )
Distinct variable groups:    x, C    x, F    x, R    ph, x
Allowed substitution hints:    A( x)    B( x)    V( x)    W( x)

Proof of Theorem ofcfval
Dummy variables  f 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofc 30158 . . . 4  |-𝑓/𝑐 R  =  ( f  e.  _V ,  c  e. 
_V  |->  ( x  e. 
dom  f  |->  ( ( f `  x ) R c ) ) )
21a1i 11 . . 3  |-  ( ph  ->𝑓/𝑐 R  =  ( f  e.  _V ,  c  e.  _V  |->  ( x  e.  dom  f  |->  ( ( f `
 x ) R c ) ) ) )
3 simprl 794 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  c  =  C ) )  -> 
f  =  F )
43dmeqd 5326 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  c  =  C ) )  ->  dom  f  =  dom  F )
53fveq1d 6193 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  c  =  C ) )  -> 
( f `  x
)  =  ( F `
 x ) )
6 simprr 796 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  c  =  C ) )  -> 
c  =  C )
75, 6oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  c  =  C ) )  -> 
( ( f `  x ) R c )  =  ( ( F `  x ) R C ) )
84, 7mpteq12dv 4733 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  c  =  C ) )  -> 
( x  e.  dom  f  |->  ( ( f `
 x ) R c ) )  =  ( x  e.  dom  F 
|->  ( ( F `  x ) R C ) ) )
9 ofcfval.1 . . . 4  |-  ( ph  ->  F  Fn  A )
10 ofcfval.2 . . . 4  |-  ( ph  ->  A  e.  V )
11 fnex 6481 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
129, 10, 11syl2anc 693 . . 3  |-  ( ph  ->  F  e.  _V )
13 ofcfval.3 . . . 4  |-  ( ph  ->  C  e.  W )
14 elex 3212 . . . 4  |-  ( C  e.  W  ->  C  e.  _V )
1513, 14syl 17 . . 3  |-  ( ph  ->  C  e.  _V )
16 fndm 5990 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
179, 16syl 17 . . . . 5  |-  ( ph  ->  dom  F  =  A )
1817, 10eqeltrd 2701 . . . 4  |-  ( ph  ->  dom  F  e.  V
)
19 mptexg 6484 . . . 4  |-  ( dom 
F  e.  V  -> 
( x  e.  dom  F 
|->  ( ( F `  x ) R C ) )  e.  _V )
2018, 19syl 17 . . 3  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( ( F `  x ) R C ) )  e.  _V )
212, 8, 12, 15, 20ovmpt2d 6788 . 2  |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  ( x  e.  dom  F  |->  ( ( F `  x ) R C ) ) )
2217eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  A ) )
2322pm5.32i 669 . . . . 5  |-  ( (
ph  /\  x  e.  dom  F )  <->  ( ph  /\  x  e.  A ) )
24 ofcfval.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
2523, 24sylbi 207 . . . 4  |-  ( (
ph  /\  x  e.  dom  F )  ->  ( F `  x )  =  B )
2625oveq1d 6665 . . 3  |-  ( (
ph  /\  x  e.  dom  F )  ->  (
( F `  x
) R C )  =  ( B R C ) )
2717, 26mpteq12dva 4732 . 2  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( ( F `  x ) R C ) )  =  ( x  e.  A  |->  ( B R C ) ) )
2821, 27eqtrd 2656 1  |-  ( ph  ->  ( F𝑓/𝑐 R C )  =  ( x  e.  A  |->  ( B R C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   dom cdm 5114    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  ∘𝑓/𝑐cofc 30157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ofc 30158
This theorem is referenced by:  ofcval  30161  ofcfn  30162  ofcfeqd2  30163  ofcf  30165  ofcfval2  30166  ofcc  30168  ofcof  30169
  Copyright terms: Public domain W3C validator