Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofresid Structured version   Visualization version   Unicode version

Theorem ofresid 29444
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Hypotheses
Ref Expression
ofresid.1  |-  ( ph  ->  F : A --> B )
ofresid.2  |-  ( ph  ->  G : A --> B )
ofresid.3  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
ofresid  |-  ( ph  ->  ( F  oF R G )  =  ( F  oF ( R  |`  ( B  X.  B ) ) G ) )

Proof of Theorem ofresid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofresid.1 . . . . . . . 8  |-  ( ph  ->  F : A --> B )
21ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  B )
3 ofresid.2 . . . . . . . 8  |-  ( ph  ->  G : A --> B )
43ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  e.  B )
5 opelxp 5146 . . . . . . 7  |-  ( <.
( F `  x
) ,  ( G `
 x ) >.  e.  ( B  X.  B
)  <->  ( ( F `
 x )  e.  B  /\  ( G `
 x )  e.  B ) )
62, 4, 5sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  <. ( F `  x ) ,  ( G `  x ) >.  e.  ( B  X.  B ) )
7 fvres 6207 . . . . . 6  |-  ( <.
( F `  x
) ,  ( G `
 x ) >.  e.  ( B  X.  B
)  ->  ( ( R  |`  ( B  X.  B ) ) `  <. ( F `  x
) ,  ( G `
 x ) >.
)  =  ( R `
 <. ( F `  x ) ,  ( G `  x )
>. ) )
86, 7syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( R  |`  ( B  X.  B ) ) `
 <. ( F `  x ) ,  ( G `  x )
>. )  =  ( R `  <. ( F `
 x ) ,  ( G `  x
) >. ) )
98eqcomd 2628 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( R `  <. ( F `
 x ) ,  ( G `  x
) >. )  =  ( ( R  |`  ( B  X.  B ) ) `
 <. ( F `  x ) ,  ( G `  x )
>. ) )
10 df-ov 6653 . . . 4  |-  ( ( F `  x ) R ( G `  x ) )  =  ( R `  <. ( F `  x ) ,  ( G `  x ) >. )
11 df-ov 6653 . . . 4  |-  ( ( F `  x ) ( R  |`  ( B  X.  B ) ) ( G `  x
) )  =  ( ( R  |`  ( B  X.  B ) ) `
 <. ( F `  x ) ,  ( G `  x )
>. )
129, 10, 113eqtr4g 2681 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
( F `  x
) R ( G `
 x ) )  =  ( ( F `
 x ) ( R  |`  ( B  X.  B ) ) ( G `  x ) ) )
1312mpteq2dva 4744 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  A  |->  ( ( F `  x
) ( R  |`  ( B  X.  B
) ) ( G `
 x ) ) ) )
14 ffn 6045 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
151, 14syl 17 . . 3  |-  ( ph  ->  F  Fn  A )
16 ffn 6045 . . . 4  |-  ( G : A --> B  ->  G  Fn  A )
173, 16syl 17 . . 3  |-  ( ph  ->  G  Fn  A )
18 ofresid.3 . . 3  |-  ( ph  ->  A  e.  V )
19 inidm 3822 . . 3  |-  ( A  i^i  A )  =  A
20 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
21 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  ( G `  x ) )
2215, 17, 18, 18, 19, 20, 21offval 6904 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( ( F `  x ) R ( G `  x ) ) ) )
2315, 17, 18, 18, 19, 20, 21offval 6904 . 2  |-  ( ph  ->  ( F  oF ( R  |`  ( B  X.  B ) ) G )  =  ( x  e.  A  |->  ( ( F `  x
) ( R  |`  ( B  X.  B
) ) ( G `
 x ) ) ) )
2413, 22, 233eqtr4d 2666 1  |-  ( ph  ->  ( F  oF R G )  =  ( F  oF ( R  |`  ( B  X.  B ) ) G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    |-> cmpt 4729    X. cxp 5112    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by:  sitmcl  30413
  Copyright terms: Public domain W3C validator