Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmcl Structured version   Visualization version   Unicode version

Theorem sitmcl 30413
Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitmcl.0  |-  ( ph  ->  W  e.  Mnd )
sitmcl.1  |-  ( ph  ->  W  e.  *MetSp )
sitmcl.2  |-  ( ph  ->  M  e.  U. ran measures )
sitmcl.3  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
sitmcl.4  |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )
Assertion
Ref Expression
sitmcl  |-  ( ph  ->  ( F ( Wsitm M ) G )  e.  ( 0 [,] +oo ) )

Proof of Theorem sitmcl
Dummy variables  x  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( dist `  W )  =  (
dist `  W )
2 sitmcl.1 . . 3  |-  ( ph  ->  W  e.  *MetSp )
3 sitmcl.2 . . 3  |-  ( ph  ->  M  e.  U. ran measures )
4 sitmcl.3 . . 3  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
5 sitmcl.4 . . 3  |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )
61, 2, 3, 4, 5sitmfval 30412 . 2  |-  ( ph  ->  ( F ( Wsitm M ) G )  =  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( F  oF ( dist `  W
) G ) ) )
7 xrge0base 29685 . . 3  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
8 xrge0topn 29989 . . . 4  |-  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
98eqcomi 2631 . . 3  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  =  (
TopOpen `  ( RR*ss  (
0 [,] +oo )
) )
10 eqid 2622 . . 3  |-  (sigaGen `  (
(ordTop `  <_  )t  ( 0 [,] +oo ) ) )  =  (sigaGen `  (
(ordTop `  <_  )t  ( 0 [,] +oo ) ) )
11 xrge00 29686 . . 3  |-  0  =  ( 0g `  ( RR*ss  ( 0 [,] +oo ) ) )
12 ovex 6678 . . . 4  |-  ( 0 [,] +oo )  e. 
_V
13 eqid 2622 . . . . 5  |-  ( RR*ss  ( 0 [,] +oo ) )  =  (
RR*ss  ( 0 [,] +oo ) )
14 ax-xrsvsca 29674 . . . . 5  |-  xe  =  ( .s `  RR*s )
1513, 14ressvsca 16032 . . . 4  |-  ( ( 0 [,] +oo )  e.  _V  ->  xe 
=  ( .s `  ( RR*ss  ( 0 [,] +oo ) ) ) )
1612, 15ax-mp 5 . . 3  |-  xe  =  ( .s `  ( RR*ss  ( 0 [,] +oo ) ) )
17 ax-xrssca 29673 . . . . . 6  |- RRfld  =  (Scalar `  RR*s )
1813, 17resssca 16031 . . . . 5  |-  ( ( 0 [,] +oo )  e.  _V  -> RRfld  =  (Scalar `  ( RR*ss  ( 0 [,] +oo ) ) ) )
1912, 18ax-mp 5 . . . 4  |- RRfld  =  (Scalar `  ( RR*ss  ( 0 [,] +oo ) ) )
2019fveq2i 6194 . . 3  |-  (RRHom ` RRfld )  =  (RRHom `  (Scalar `  ( RR*ss  ( 0 [,] +oo ) ) ) )
21 ovexd 6680 . . 3  |-  ( ph  ->  ( RR*ss  ( 0 [,] +oo ) )  e.  _V )
22 eqid 2622 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
23 eqid 2622 . . . . . . 7  |-  ( TopOpen `  W )  =  (
TopOpen `  W )
24 eqid 2622 . . . . . . 7  |-  (sigaGen `  ( TopOpen
`  W ) )  =  (sigaGen `  ( TopOpen
`  W ) )
25 eqid 2622 . . . . . . 7  |-  ( 0g
`  W )  =  ( 0g `  W
)
26 eqid 2622 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
27 eqid 2622 . . . . . . 7  |-  (RRHom `  (Scalar `  W ) )  =  (RRHom `  (Scalar `  W ) )
2822, 23, 24, 25, 26, 27, 2, 3, 4sibff 30398 . . . . . 6  |-  ( ph  ->  F : U. dom  M --> U. ( TopOpen `  W
) )
29 xmstps 22258 . . . . . . . 8  |-  ( W  e.  *MetSp  ->  W  e.  TopSp )
3022, 23tpsuni 20740 . . . . . . . 8  |-  ( W  e.  TopSp  ->  ( Base `  W )  =  U. ( TopOpen `  W )
)
312, 29, 303syl 18 . . . . . . 7  |-  ( ph  ->  ( Base `  W
)  =  U. ( TopOpen
`  W ) )
32 feq3 6028 . . . . . . 7  |-  ( (
Base `  W )  =  U. ( TopOpen `  W
)  ->  ( F : U. dom  M --> ( Base `  W )  <->  F : U. dom  M --> U. ( TopOpen
`  W ) ) )
3331, 32syl 17 . . . . . 6  |-  ( ph  ->  ( F : U. dom  M --> ( Base `  W
)  <->  F : U. dom  M --> U. ( TopOpen `  W
) ) )
3428, 33mpbird 247 . . . . 5  |-  ( ph  ->  F : U. dom  M --> ( Base `  W
) )
3522, 23, 24, 25, 26, 27, 2, 3, 5sibff 30398 . . . . . 6  |-  ( ph  ->  G : U. dom  M --> U. ( TopOpen `  W
) )
36 feq3 6028 . . . . . . 7  |-  ( (
Base `  W )  =  U. ( TopOpen `  W
)  ->  ( G : U. dom  M --> ( Base `  W )  <->  G : U. dom  M --> U. ( TopOpen
`  W ) ) )
3731, 36syl 17 . . . . . 6  |-  ( ph  ->  ( G : U. dom  M --> ( Base `  W
)  <->  G : U. dom  M --> U. ( TopOpen `  W
) ) )
3835, 37mpbird 247 . . . . 5  |-  ( ph  ->  G : U. dom  M --> ( Base `  W
) )
39 dmexg 7097 . . . . . 6  |-  ( M  e.  U. ran measures  ->  dom  M  e.  _V )
40 uniexg 6955 . . . . . 6  |-  ( dom 
M  e.  _V  ->  U.
dom  M  e.  _V )
413, 39, 403syl 18 . . . . 5  |-  ( ph  ->  U. dom  M  e. 
_V )
4234, 38, 41ofresid 29444 . . . 4  |-  ( ph  ->  ( F  oF ( dist `  W
) G )  =  ( F  oF ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) G ) )
432, 29syl 17 . . . . 5  |-  ( ph  ->  W  e.  TopSp )
44 eqid 2622 . . . . . . . 8  |-  ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) )  =  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) )
4522, 44xmsxmet 22261 . . . . . . 7  |-  ( W  e.  *MetSp  ->  (
( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) )  e.  ( *Met `  ( Base `  W
) ) )
46 xmetpsmet 22153 . . . . . . 7  |-  ( ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  ( *Met `  ( Base `  W ) )  -> 
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  (PsMet `  ( Base `  W )
) )
472, 45, 463syl 18 . . . . . 6  |-  ( ph  ->  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  (PsMet `  ( Base `  W )
) )
48 psmetxrge0 22118 . . . . . 6  |-  ( ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  (PsMet `  ( Base `  W )
)  ->  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) : ( ( Base `  W )  X.  ( Base `  W ) ) --> ( 0 [,] +oo ) )
4947, 48syl 17 . . . . 5  |-  ( ph  ->  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) : ( (
Base `  W )  X.  ( Base `  W
) ) --> ( 0 [,] +oo ) )
50 xrge0tps 29988 . . . . . 6  |-  ( RR*ss  ( 0 [,] +oo ) )  e.  TopSp
5150a1i 11 . . . . 5  |-  ( ph  ->  ( RR*ss  ( 0 [,] +oo ) )  e.  TopSp )
5223, 22, 44xmstopn 22256 . . . . . . . 8  |-  ( W  e.  *MetSp  ->  ( TopOpen
`  W )  =  ( MetOpen `  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ) )
532, 52syl 17 . . . . . . 7  |-  ( ph  ->  ( TopOpen `  W )  =  ( MetOpen `  (
( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ) )
54 eqid 2622 . . . . . . . . 9  |-  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) )  =  (
MetOpen `  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) )
5554methaus 22325 . . . . . . . 8  |-  ( ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  ( *Met `  ( Base `  W ) )  -> 
( MetOpen `  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) )  e.  Haus )
562, 45, 553syl 18 . . . . . . 7  |-  ( ph  ->  ( MetOpen `  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) )  e.  Haus )
5753, 56eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( TopOpen `  W )  e.  Haus )
58 haust1 21156 . . . . . 6  |-  ( (
TopOpen `  W )  e. 
Haus  ->  ( TopOpen `  W
)  e.  Fre )
5957, 58syl 17 . . . . 5  |-  ( ph  ->  ( TopOpen `  W )  e.  Fre )
602, 45syl 17 . . . . . . 7  |-  ( ph  ->  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  ( *Met `  ( Base `  W ) ) )
61 sitmcl.0 . . . . . . . 8  |-  ( ph  ->  W  e.  Mnd )
6222, 25mndidcl 17308 . . . . . . . 8  |-  ( W  e.  Mnd  ->  ( 0g `  W )  e.  ( Base `  W
) )
6361, 62syl 17 . . . . . . 7  |-  ( ph  ->  ( 0g `  W
)  e.  ( Base `  W ) )
64 xmet0 22147 . . . . . . 7  |-  ( ( ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  ( *Met `  ( Base `  W ) )  /\  ( 0g `  W )  e.  ( Base `  W
) )  ->  (
( 0g `  W
) ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ( 0g `  W ) )  =  0 )
6560, 63, 64syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( 0g `  W ) ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ( 0g `  W
) )  =  0 )
6665, 11syl6eq 2672 . . . . 5  |-  ( ph  ->  ( ( 0g `  W ) ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ( 0g `  W
) )  =  ( 0g `  ( RR*ss  ( 0 [,] +oo ) ) ) )
6722, 23, 24, 25, 26, 27, 2, 3, 4, 7, 43, 49, 5, 51, 59, 66sibfof 30402 . . . 4  |-  ( ph  ->  ( F  oF ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) G )  e. 
dom  ( ( RR*ss  ( 0 [,] +oo ) )sitg M ) )
6842, 67eqeltrd 2701 . . 3  |-  ( ph  ->  ( F  oF ( dist `  W
) G )  e. 
dom  ( ( RR*ss  ( 0 [,] +oo ) )sitg M ) )
69 rebase 19952 . . . . 5  |-  RR  =  ( Base ` RRfld )
7069, 69xpeq12i 5137 . . . 4  |-  ( RR 
X.  RR )  =  ( ( Base ` RRfld )  X.  ( Base ` RRfld ) )
7170reseq2i 5393 . . 3  |-  ( (
dist ` RRfld )  |`  ( RR  X.  RR ) )  =  ( ( dist ` RRfld )  |`  ( ( Base ` RRfld )  X.  ( Base ` RRfld ) ) )
72 xrge0cmn 19788 . . . 4  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
7372a1i 11 . . 3  |-  ( ph  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
74 rerrext 30053 . . . . 5  |- RRfld  e. ℝExt
7519, 74eqeltrri 2698 . . . 4  |-  (Scalar `  ( RR*ss  ( 0 [,] +oo ) ) )  e. ℝExt
7675a1i 11 . . 3  |-  ( ph  ->  (Scalar `  ( RR*ss  ( 0 [,] +oo ) ) )  e. ℝExt  )
77 rrhre 30065 . . . . . . . . 9  |-  (RRHom ` RRfld )  =  (  _I  |`  RR )
7877imaeq1i 5463 . . . . . . . 8  |-  ( (RRHom ` RRfld ) " ( 0 [,) +oo ) )  =  ( (  _I  |`  RR ) " (
0 [,) +oo )
)
79 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
80 pnfxr 10092 . . . . . . . . . 10  |- +oo  e.  RR*
81 icossre 12254 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
8279, 80, 81mp2an 708 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  RR
83 resiima 5480 . . . . . . . . 9  |-  ( ( 0 [,) +oo )  C_  RR  ->  ( (  _I  |`  RR ) "
( 0 [,) +oo ) )  =  ( 0 [,) +oo )
)
8482, 83ax-mp 5 . . . . . . . 8  |-  ( (  _I  |`  RR ) " ( 0 [,) +oo ) )  =  ( 0 [,) +oo )
8578, 84eqtri 2644 . . . . . . 7  |-  ( (RRHom ` RRfld ) " ( 0 [,) +oo ) )  =  ( 0 [,) +oo )
86 icossicc 12260 . . . . . . 7  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
8785, 86eqsstri 3635 . . . . . 6  |-  ( (RRHom ` RRfld ) " ( 0 [,) +oo ) ) 
C_  ( 0 [,] +oo )
8887sseli 3599 . . . . 5  |-  ( m  e.  ( (RRHom ` RRfld ) " ( 0 [,) +oo ) )  ->  m  e.  ( 0 [,] +oo ) )
89883ad2ant2 1083 . . . 4  |-  ( (
ph  /\  m  e.  ( (RRHom ` RRfld ) " (
0 [,) +oo )
)  /\  x  e.  ( 0 [,] +oo ) )  ->  m  e.  ( 0 [,] +oo ) )
90 simp3 1063 . . . 4  |-  ( (
ph  /\  m  e.  ( (RRHom ` RRfld ) " (
0 [,) +oo )
)  /\  x  e.  ( 0 [,] +oo ) )  ->  x  e.  ( 0 [,] +oo ) )
91 ge0xmulcl 12287 . . . 4  |-  ( ( m  e.  ( 0 [,] +oo )  /\  x  e.  ( 0 [,] +oo ) )  ->  ( m xe x )  e.  ( 0 [,] +oo ) )
9289, 90, 91syl2anc 693 . . 3  |-  ( (
ph  /\  m  e.  ( (RRHom ` RRfld ) " (
0 [,) +oo )
)  /\  x  e.  ( 0 [,] +oo ) )  ->  (
m xe x )  e.  ( 0 [,] +oo ) )
937, 9, 10, 11, 16, 20, 21, 3, 68, 19, 71, 51, 73, 76, 92sitgclg 30404 . 2  |-  ( ph  ->  ( ( ( RR*ss  ( 0 [,] +oo ) )sitg M ) `  ( F  oF
( dist `  W ) G ) )  e.  ( 0 [,] +oo ) )
946, 93eqeltrd 2701 1  |-  ( ph  ->  ( F ( Wsitm M ) G )  e.  ( 0 [,] +oo ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   U.cuni 4436    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   xecxmu 11945   [,)cico 12177   [,]cicc 12178   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   .scvsca 15945   distcds 15950   ↾t crest 16081   TopOpenctopn 16082   0gc0g 16100  ordTopcordt 16159   RR*scxrs 16160   Mndcmnd 17294  CMndccmn 18193  PsMetcpsmet 19730   *Metcxmt 19731   MetOpencmopn 19736  RRfldcrefld 19950   TopSpctps 20736   Frect1 21111   Hauscha 21112   *MetSpcxme 22122  RRHomcrrh 30037   ℝExt crrext 30038  sigaGencsigagen 30201  measurescmeas 30258  sitmcsitm 30390  sitgcsitg 30391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-xrssca 29673  ax-xrsvsca 29674
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-od 17948  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-nzr 19258  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-metu 19745  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zlm 19853  df-chr 19854  df-refld 19951  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-reg 21120  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-fcls 21745  df-cnext 21864  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-ust 22004  df-utop 22035  df-uss 22060  df-usp 22061  df-ucn 22080  df-cfilu 22091  df-cusp 22102  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-cfil 23053  df-cmet 23055  df-cms 23132  df-limc 23630  df-dv 23631  df-log 24303  df-omnd 29699  df-ogrp 29700  df-orng 29797  df-ofld 29798  df-qqh 30017  df-rrh 30039  df-rrext 30043  df-esum 30090  df-siga 30171  df-sigagen 30202  df-meas 30259  df-mbfm 30313  df-sitg 30392  df-sitm 30393
This theorem is referenced by:  sitmf  30414
  Copyright terms: Public domain W3C validator