Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelco3 Structured version   Visualization version   Unicode version

Theorem opelco3 31678
Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.)
Assertion
Ref Expression
opelco3  |-  ( <. A ,  B >.  e.  ( C  o.  D
)  <->  B  e.  ( C " ( D " { A } ) ) )

Proof of Theorem opelco3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-br 4654 . 2  |-  ( A ( C  o.  D
) B  <->  <. A ,  B >.  e.  ( C  o.  D ) )
2 relco 5633 . . . 4  |-  Rel  ( C  o.  D )
3 brrelex12 5155 . . . 4  |-  ( ( Rel  ( C  o.  D )  /\  A
( C  o.  D
) B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
42, 3mpan 706 . . 3  |-  ( A ( C  o.  D
) B  ->  ( A  e.  _V  /\  B  e.  _V ) )
5 snprc 4253 . . . . . 6  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
6 noel 3919 . . . . . . 7  |-  -.  B  e.  (/)
7 imaeq2 5462 . . . . . . . . . 10  |-  ( { A }  =  (/)  ->  ( D " { A } )  =  ( D " (/) ) )
87imaeq2d 5466 . . . . . . . . 9  |-  ( { A }  =  (/)  ->  ( C " ( D " { A }
) )  =  ( C " ( D
" (/) ) ) )
9 ima0 5481 . . . . . . . . . . 11  |-  ( D
" (/) )  =  (/)
109imaeq2i 5464 . . . . . . . . . 10  |-  ( C
" ( D " (/) ) )  =  ( C " (/) )
11 ima0 5481 . . . . . . . . . 10  |-  ( C
" (/) )  =  (/)
1210, 11eqtri 2644 . . . . . . . . 9  |-  ( C
" ( D " (/) ) )  =  (/)
138, 12syl6eq 2672 . . . . . . . 8  |-  ( { A }  =  (/)  ->  ( C " ( D " { A }
) )  =  (/) )
1413eleq2d 2687 . . . . . . 7  |-  ( { A }  =  (/)  ->  ( B  e.  ( C " ( D
" { A }
) )  <->  B  e.  (/) ) )
156, 14mtbiri 317 . . . . . 6  |-  ( { A }  =  (/)  ->  -.  B  e.  ( C " ( D
" { A }
) ) )
165, 15sylbi 207 . . . . 5  |-  ( -.  A  e.  _V  ->  -.  B  e.  ( C
" ( D " { A } ) ) )
1716con4i 113 . . . 4  |-  ( B  e.  ( C "
( D " { A } ) )  ->  A  e.  _V )
18 elex 3212 . . . 4  |-  ( B  e.  ( C "
( D " { A } ) )  ->  B  e.  _V )
1917, 18jca 554 . . 3  |-  ( B  e.  ( C "
( D " { A } ) )  -> 
( A  e.  _V  /\  B  e.  _V )
)
20 df-rex 2918 . . . . 5  |-  ( E. z  e.  ( D
" { A }
) z C B  <->  E. z ( z  e.  ( D " { A } )  /\  z C B ) )
21 vex 3203 . . . . . . . . . 10  |-  z  e. 
_V
22 elimasng 5491 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  z  e.  _V )  ->  ( z  e.  ( D " { A } )  <->  <. A , 
z >.  e.  D ) )
2321, 22mpan2 707 . . . . . . . . 9  |-  ( A  e.  _V  ->  (
z  e.  ( D
" { A }
)  <->  <. A ,  z
>.  e.  D ) )
24 df-br 4654 . . . . . . . . 9  |-  ( A D z  <->  <. A , 
z >.  e.  D )
2523, 24syl6bbr 278 . . . . . . . 8  |-  ( A  e.  _V  ->  (
z  e.  ( D
" { A }
)  <->  A D z ) )
2625adantr 481 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( z  e.  ( D " { A } )  <->  A D
z ) )
2726anbi1d 741 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( z  e.  ( D " { A } )  /\  z C B )  <->  ( A D z  /\  z C B ) ) )
2827exbidv 1850 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( E. z ( z  e.  ( D
" { A }
)  /\  z C B )  <->  E. z
( A D z  /\  z C B ) ) )
2920, 28syl5rbb 273 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( E. z ( A D z  /\  z C B )  <->  E. z  e.  ( D " { A } ) z C B ) )
30 brcog 5288 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A ( C  o.  D ) B  <->  E. z ( A D z  /\  z C B ) ) )
31 elimag 5470 . . . . 5  |-  ( B  e.  _V  ->  ( B  e.  ( C " ( D " { A } ) )  <->  E. z  e.  ( D " { A } ) z C B ) )
3231adantl 482 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B  e.  ( C " ( D
" { A }
) )  <->  E. z  e.  ( D " { A } ) z C B ) )
3329, 30, 323bitr4d 300 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A ( C  o.  D ) B  <-> 
B  e.  ( C
" ( D " { A } ) ) ) )
344, 19, 33pm5.21nii 368 . 2  |-  ( A ( C  o.  D
) B  <->  B  e.  ( C " ( D
" { A }
) ) )
351, 34bitr3i 266 1  |-  ( <. A ,  B >.  e.  ( C  o.  D
)  <->  B  e.  ( C " ( D " { A } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653   "cima 5117    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator