| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opelco3 | Structured version Visualization version Unicode version | ||
| Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.) |
| Ref | Expression |
|---|---|
| opelco3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4654 |
. 2
| |
| 2 | relco 5633 |
. . . 4
| |
| 3 | brrelex12 5155 |
. . . 4
| |
| 4 | 2, 3 | mpan 706 |
. . 3
|
| 5 | snprc 4253 |
. . . . . 6
| |
| 6 | noel 3919 |
. . . . . . 7
| |
| 7 | imaeq2 5462 |
. . . . . . . . . 10
| |
| 8 | 7 | imaeq2d 5466 |
. . . . . . . . 9
|
| 9 | ima0 5481 |
. . . . . . . . . . 11
| |
| 10 | 9 | imaeq2i 5464 |
. . . . . . . . . 10
|
| 11 | ima0 5481 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | eqtri 2644 |
. . . . . . . . 9
|
| 13 | 8, 12 | syl6eq 2672 |
. . . . . . . 8
|
| 14 | 13 | eleq2d 2687 |
. . . . . . 7
|
| 15 | 6, 14 | mtbiri 317 |
. . . . . 6
|
| 16 | 5, 15 | sylbi 207 |
. . . . 5
|
| 17 | 16 | con4i 113 |
. . . 4
|
| 18 | elex 3212 |
. . . 4
| |
| 19 | 17, 18 | jca 554 |
. . 3
|
| 20 | df-rex 2918 |
. . . . 5
| |
| 21 | vex 3203 |
. . . . . . . . . 10
| |
| 22 | elimasng 5491 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | mpan2 707 |
. . . . . . . . 9
|
| 24 | df-br 4654 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl6bbr 278 |
. . . . . . . 8
|
| 26 | 25 | adantr 481 |
. . . . . . 7
|
| 27 | 26 | anbi1d 741 |
. . . . . 6
|
| 28 | 27 | exbidv 1850 |
. . . . 5
|
| 29 | 20, 28 | syl5rbb 273 |
. . . 4
|
| 30 | brcog 5288 |
. . . 4
| |
| 31 | elimag 5470 |
. . . . 5
| |
| 32 | 31 | adantl 482 |
. . . 4
|
| 33 | 29, 30, 32 | 3bitr4d 300 |
. . 3
|
| 34 | 4, 19, 33 | pm5.21nii 368 |
. 2
|
| 35 | 1, 34 | bitr3i 266 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |