Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrn5 Structured version   Visualization version   Unicode version

Theorem dfrn5 31677
Description: Definition of range in terms of  2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrn5  |-  ran  A  =  ( ( 2nd  |`  ( _V  X.  _V ) ) " A
)

Proof of Theorem dfrn5
Dummy variables  p  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 2042 . . . 4  |-  ( E. y E. p E. z ( p  = 
<. y ,  z >.  /\  ( p 2nd x  /\  p  e.  A
) )  <->  E. p E. y E. z ( p  =  <. y ,  z >.  /\  (
p 2nd x  /\  p  e.  A )
) )
2 opex 4932 . . . . . . . 8  |-  <. y ,  z >.  e.  _V
3 breq1 4656 . . . . . . . . . 10  |-  ( p  =  <. y ,  z
>.  ->  ( p 2nd x  <->  <. y ,  z
>. 2nd x ) )
4 eleq1 2689 . . . . . . . . . 10  |-  ( p  =  <. y ,  z
>.  ->  ( p  e.  A  <->  <. y ,  z
>.  e.  A ) )
53, 4anbi12d 747 . . . . . . . . 9  |-  ( p  =  <. y ,  z
>.  ->  ( ( p 2nd x  /\  p  e.  A )  <->  ( <. y ,  z >. 2nd x  /\  <. y ,  z
>.  e.  A ) ) )
6 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
7 vex 3203 . . . . . . . . . . . 12  |-  z  e. 
_V
86, 7br2ndeq 31671 . . . . . . . . . . 11  |-  ( <.
y ,  z >. 2nd x  <->  x  =  z
)
9 equcom 1945 . . . . . . . . . . 11  |-  ( x  =  z  <->  z  =  x )
108, 9bitri 264 . . . . . . . . . 10  |-  ( <.
y ,  z >. 2nd x  <->  z  =  x )
1110anbi1i 731 . . . . . . . . 9  |-  ( (
<. y ,  z >. 2nd x  /\  <. y ,  z >.  e.  A
)  <->  ( z  =  x  /\  <. y ,  z >.  e.  A
) )
125, 11syl6bb 276 . . . . . . . 8  |-  ( p  =  <. y ,  z
>.  ->  ( ( p 2nd x  /\  p  e.  A )  <->  ( z  =  x  /\  <. y ,  z >.  e.  A
) ) )
132, 12ceqsexv 3242 . . . . . . 7  |-  ( E. p ( p  = 
<. y ,  z >.  /\  ( p 2nd x  /\  p  e.  A
) )  <->  ( z  =  x  /\  <. y ,  z >.  e.  A
) )
1413exbii 1774 . . . . . 6  |-  ( E. z E. p ( p  =  <. y ,  z >.  /\  (
p 2nd x  /\  p  e.  A )
)  <->  E. z ( z  =  x  /\  <. y ,  z >.  e.  A
) )
15 excom 2042 . . . . . 6  |-  ( E. z E. p ( p  =  <. y ,  z >.  /\  (
p 2nd x  /\  p  e.  A )
)  <->  E. p E. z
( p  =  <. y ,  z >.  /\  (
p 2nd x  /\  p  e.  A )
) )
16 vex 3203 . . . . . . 7  |-  x  e. 
_V
17 opeq2 4403 . . . . . . . 8  |-  ( z  =  x  ->  <. y ,  z >.  =  <. y ,  x >. )
1817eleq1d 2686 . . . . . . 7  |-  ( z  =  x  ->  ( <. y ,  z >.  e.  A  <->  <. y ,  x >.  e.  A ) )
1916, 18ceqsexv 3242 . . . . . 6  |-  ( E. z ( z  =  x  /\  <. y ,  z >.  e.  A
)  <->  <. y ,  x >.  e.  A )
2014, 15, 193bitr3ri 291 . . . . 5  |-  ( <.
y ,  x >.  e.  A  <->  E. p E. z
( p  =  <. y ,  z >.  /\  (
p 2nd x  /\  p  e.  A )
) )
2120exbii 1774 . . . 4  |-  ( E. y <. y ,  x >.  e.  A  <->  E. y E. p E. z ( p  =  <. y ,  z >.  /\  (
p 2nd x  /\  p  e.  A )
) )
22 ancom 466 . . . . . 6  |-  ( ( p  e.  A  /\  p ( 2nd  |`  ( _V  X.  _V ) ) x )  <->  ( p
( 2nd  |`  ( _V 
X.  _V ) ) x  /\  p  e.  A
) )
23 anass 681 . . . . . . 7  |-  ( ( ( E. y E. z  p  =  <. y ,  z >.  /\  p 2nd x )  /\  p  e.  A )  <->  ( E. y E. z  p  = 
<. y ,  z >.  /\  ( p 2nd x  /\  p  e.  A
) ) )
2416brres 5402 . . . . . . . . 9  |-  ( p ( 2nd  |`  ( _V  X.  _V ) ) x  <->  ( p 2nd x  /\  p  e.  ( _V  X.  _V ) ) )
25 ancom 466 . . . . . . . . . 10  |-  ( ( p 2nd x  /\  p  e.  ( _V  X.  _V ) )  <->  ( p  e.  ( _V  X.  _V )  /\  p 2nd x
) )
26 elvv 5177 . . . . . . . . . . 11  |-  ( p  e.  ( _V  X.  _V )  <->  E. y E. z  p  =  <. y ,  z >. )
2726anbi1i 731 . . . . . . . . . 10  |-  ( ( p  e.  ( _V 
X.  _V )  /\  p 2nd x )  <->  ( E. y E. z  p  = 
<. y ,  z >.  /\  p 2nd x ) )
2825, 27bitri 264 . . . . . . . . 9  |-  ( ( p 2nd x  /\  p  e.  ( _V  X.  _V ) )  <->  ( E. y E. z  p  = 
<. y ,  z >.  /\  p 2nd x ) )
2924, 28bitri 264 . . . . . . . 8  |-  ( p ( 2nd  |`  ( _V  X.  _V ) ) x  <->  ( E. y E. z  p  =  <. y ,  z >.  /\  p 2nd x ) )
3029anbi1i 731 . . . . . . 7  |-  ( ( p ( 2nd  |`  ( _V  X.  _V ) ) x  /\  p  e.  A )  <->  ( ( E. y E. z  p  =  <. y ,  z
>.  /\  p 2nd x
)  /\  p  e.  A ) )
31 19.41vv 1915 . . . . . . 7  |-  ( E. y E. z ( p  =  <. y ,  z >.  /\  (
p 2nd x  /\  p  e.  A )
)  <->  ( E. y E. z  p  =  <. y ,  z >.  /\  ( p 2nd x  /\  p  e.  A
) ) )
3223, 30, 313bitr4i 292 . . . . . 6  |-  ( ( p ( 2nd  |`  ( _V  X.  _V ) ) x  /\  p  e.  A )  <->  E. y E. z ( p  = 
<. y ,  z >.  /\  ( p 2nd x  /\  p  e.  A
) ) )
3322, 32bitri 264 . . . . 5  |-  ( ( p  e.  A  /\  p ( 2nd  |`  ( _V  X.  _V ) ) x )  <->  E. y E. z ( p  = 
<. y ,  z >.  /\  ( p 2nd x  /\  p  e.  A
) ) )
3433exbii 1774 . . . 4  |-  ( E. p ( p  e.  A  /\  p ( 2nd  |`  ( _V  X.  _V ) ) x )  <->  E. p E. y E. z ( p  = 
<. y ,  z >.  /\  ( p 2nd x  /\  p  e.  A
) ) )
351, 21, 343bitr4i 292 . . 3  |-  ( E. y <. y ,  x >.  e.  A  <->  E. p
( p  e.  A  /\  p ( 2nd  |`  ( _V  X.  _V ) ) x ) )
3616elrn2 5365 . . 3  |-  ( x  e.  ran  A  <->  E. y <. y ,  x >.  e.  A )
3716elima2 5472 . . 3  |-  ( x  e.  ( ( 2nd  |`  ( _V  X.  _V ) ) " A
)  <->  E. p ( p  e.  A  /\  p
( 2nd  |`  ( _V 
X.  _V ) ) x ) )
3835, 36, 373bitr4i 292 . 2  |-  ( x  e.  ran  A  <->  x  e.  ( ( 2nd  |`  ( _V  X.  _V ) )
" A ) )
3938eqriv 2619 1  |-  ran  A  =  ( ( 2nd  |`  ( _V  X.  _V ) ) " A
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116   "cima 5117   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-2nd 7169
This theorem is referenced by:  brrange  32041
  Copyright terms: Public domain W3C validator