| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elima4 | Structured version Visualization version Unicode version | ||
| Description: Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.) |
| Ref | Expression |
|---|---|
| elima4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | xpeq2 5129 |
. . . . . . 7
| |
| 3 | xp0 5552 |
. . . . . . 7
| |
| 4 | 2, 3 | syl6eq 2672 |
. . . . . 6
|
| 5 | 4 | ineq2d 3814 |
. . . . 5
|
| 6 | in0 3968 |
. . . . 5
| |
| 7 | 5, 6 | syl6eq 2672 |
. . . 4
|
| 8 | 7 | necon3i 2826 |
. . 3
|
| 9 | snnzb 4254 |
. . 3
| |
| 10 | 8, 9 | sylibr 224 |
. 2
|
| 11 | eleq1 2689 |
. . 3
| |
| 12 | sneq 4187 |
. . . . . 6
| |
| 13 | 12 | xpeq2d 5139 |
. . . . 5
|
| 14 | 13 | ineq2d 3814 |
. . . 4
|
| 15 | 14 | neeq1d 2853 |
. . 3
|
| 16 | elin 3796 |
. . . . . . 7
| |
| 17 | ancom 466 |
. . . . . . 7
| |
| 18 | elxp 5131 |
. . . . . . . 8
| |
| 19 | 18 | anbi1i 731 |
. . . . . . 7
|
| 20 | 16, 17, 19 | 3bitri 286 |
. . . . . 6
|
| 21 | 20 | exbii 1774 |
. . . . 5
|
| 22 | anass 681 |
. . . . . . . . 9
| |
| 23 | 22 | 2exbii 1775 |
. . . . . . . 8
|
| 24 | 19.41vv 1915 |
. . . . . . . 8
| |
| 25 | 23, 24 | bitr3i 266 |
. . . . . . 7
|
| 26 | 25 | exbii 1774 |
. . . . . 6
|
| 27 | exrot3 2045 |
. . . . . 6
| |
| 28 | 26, 27 | bitr3i 266 |
. . . . 5
|
| 29 | opex 4932 |
. . . . . . . . 9
| |
| 30 | eleq1 2689 |
. . . . . . . . . 10
| |
| 31 | 30 | anbi2d 740 |
. . . . . . . . 9
|
| 32 | 29, 31 | ceqsexv 3242 |
. . . . . . . 8
|
| 33 | 32 | exbii 1774 |
. . . . . . 7
|
| 34 | anass 681 |
. . . . . . . . 9
| |
| 35 | an12 838 |
. . . . . . . . 9
| |
| 36 | velsn 4193 |
. . . . . . . . . 10
| |
| 37 | 36 | anbi1i 731 |
. . . . . . . . 9
|
| 38 | 34, 35, 37 | 3bitri 286 |
. . . . . . . 8
|
| 39 | 38 | exbii 1774 |
. . . . . . 7
|
| 40 | vex 3203 |
. . . . . . . 8
| |
| 41 | opeq2 4403 |
. . . . . . . . . 10
| |
| 42 | 41 | eleq1d 2686 |
. . . . . . . . 9
|
| 43 | 42 | anbi2d 740 |
. . . . . . . 8
|
| 44 | 40, 43 | ceqsexv 3242 |
. . . . . . 7
|
| 45 | 33, 39, 44 | 3bitri 286 |
. . . . . 6
|
| 46 | 45 | exbii 1774 |
. . . . 5
|
| 47 | 21, 28, 46 | 3bitri 286 |
. . . 4
|
| 48 | n0 3931 |
. . . 4
| |
| 49 | 40 | elima3 5473 |
. . . 4
|
| 50 | 47, 48, 49 | 3bitr4ri 293 |
. . 3
|
| 51 | 11, 15, 50 | vtoclbg 3267 |
. 2
|
| 52 | 1, 10, 51 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |