| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelopabsb | Structured version Visualization version Unicode version | ||
| Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| opelopabsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . . . . . 10
| |
| 2 | vex 3203 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | opnzi 4943 |
. . . . . . . . 9
|
| 4 | simpl 473 |
. . . . . . . . . . 11
| |
| 5 | 4 | eqcomd 2628 |
. . . . . . . . . 10
|
| 6 | 5 | necon3ai 2819 |
. . . . . . . . 9
|
| 7 | 3, 6 | ax-mp 5 |
. . . . . . . 8
|
| 8 | 7 | nex 1731 |
. . . . . . 7
|
| 9 | 8 | nex 1731 |
. . . . . 6
|
| 10 | elopab 4983 |
. . . . . 6
| |
| 11 | 9, 10 | mtbir 313 |
. . . . 5
|
| 12 | eleq1 2689 |
. . . . 5
| |
| 13 | 11, 12 | mtbiri 317 |
. . . 4
|
| 14 | 13 | necon2ai 2823 |
. . 3
|
| 15 | opnz 4942 |
. . 3
| |
| 16 | 14, 15 | sylib 208 |
. 2
|
| 17 | sbcex 3445 |
. . 3
| |
| 18 | spesbc 3521 |
. . . 4
| |
| 19 | sbcex 3445 |
. . . . 5
| |
| 20 | 19 | exlimiv 1858 |
. . . 4
|
| 21 | 18, 20 | syl 17 |
. . 3
|
| 22 | 17, 21 | jca 554 |
. 2
|
| 23 | opeq1 4402 |
. . . . 5
| |
| 24 | 23 | eleq1d 2686 |
. . . 4
|
| 25 | dfsbcq2 3438 |
. . . 4
| |
| 26 | 24, 25 | bibi12d 335 |
. . 3
|
| 27 | opeq2 4403 |
. . . . 5
| |
| 28 | 27 | eleq1d 2686 |
. . . 4
|
| 29 | dfsbcq2 3438 |
. . . . 5
| |
| 30 | 29 | sbcbidv 3490 |
. . . 4
|
| 31 | 28, 30 | bibi12d 335 |
. . 3
|
| 32 | nfopab1 4719 |
. . . . . 6
| |
| 33 | 32 | nfel2 2781 |
. . . . 5
|
| 34 | nfs1v 2437 |
. . . . 5
| |
| 35 | 33, 34 | nfbi 1833 |
. . . 4
|
| 36 | opeq1 4402 |
. . . . . 6
| |
| 37 | 36 | eleq1d 2686 |
. . . . 5
|
| 38 | sbequ12 2111 |
. . . . 5
| |
| 39 | 37, 38 | bibi12d 335 |
. . . 4
|
| 40 | nfopab2 4720 |
. . . . . . 7
| |
| 41 | 40 | nfel2 2781 |
. . . . . 6
|
| 42 | nfs1v 2437 |
. . . . . 6
| |
| 43 | 41, 42 | nfbi 1833 |
. . . . 5
|
| 44 | opeq2 4403 |
. . . . . . 7
| |
| 45 | 44 | eleq1d 2686 |
. . . . . 6
|
| 46 | sbequ12 2111 |
. . . . . 6
| |
| 47 | 45, 46 | bibi12d 335 |
. . . . 5
|
| 48 | opabid 4982 |
. . . . 5
| |
| 49 | 43, 47, 48 | chvar 2262 |
. . . 4
|
| 50 | 35, 39, 49 | chvar 2262 |
. . 3
|
| 51 | 26, 31, 50 | vtocl2g 3270 |
. 2
|
| 52 | 16, 22, 51 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 |
| This theorem is referenced by: brabsb 4986 opelopabgf 4995 opelopabaf 4999 opelopabf 5000 difopab 5253 isarep1 5977 fmptsnd 6435 |
| Copyright terms: Public domain | W3C validator |