MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf2 Structured version   Visualization version   Unicode version

Theorem opncldf2 20889
Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1  |-  X  = 
U. J
opncldf.2  |-  F  =  ( u  e.  J  |->  ( X  \  u
) )
Assertion
Ref Expression
opncldf2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( F `  A
)  =  ( X 
\  A ) )
Distinct variable groups:    u, A    u, J    u, X
Allowed substitution hint:    F( u)

Proof of Theorem opncldf2
StepHypRef Expression
1 simpr 477 . 2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  e.  J )
2 opncldf.1 . . 3  |-  X  = 
U. J
32opncld 20837 . 2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( X  \  A
)  e.  ( Clsd `  J ) )
4 difeq2 3722 . . 3  |-  ( u  =  A  ->  ( X  \  u )  =  ( X  \  A
) )
5 opncldf.2 . . 3  |-  F  =  ( u  e.  J  |->  ( X  \  u
) )
64, 5fvmptg 6280 . 2  |-  ( ( A  e.  J  /\  ( X  \  A )  e.  ( Clsd `  J
) )  ->  ( F `  A )  =  ( X  \  A ) )
71, 3, 6syl2anc 693 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( F `  A
)  =  ( X 
\  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571   U.cuni 4436    |-> cmpt 4729   ` cfv 5888   Topctop 20698   Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-top 20699  df-cld 20823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator