MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf1 Structured version   Visualization version   Unicode version

Theorem opncldf1 20888
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1  |-  X  = 
U. J
opncldf.2  |-  F  =  ( u  e.  J  |->  ( X  \  u
) )
Assertion
Ref Expression
opncldf1  |-  ( J  e.  Top  ->  ( F : J -1-1-onto-> ( Clsd `  J
)  /\  `' F  =  ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) ) ) )
Distinct variable groups:    x, F    x, u, J    u, X, x
Allowed substitution hint:    F( u)

Proof of Theorem opncldf1
StepHypRef Expression
1 opncldf.2 . 2  |-  F  =  ( u  e.  J  |->  ( X  \  u
) )
2 opncldf.1 . . 3  |-  X  = 
U. J
32opncld 20837 . 2  |-  ( ( J  e.  Top  /\  u  e.  J )  ->  ( X  \  u
)  e.  ( Clsd `  J ) )
42cldopn 20835 . . 3  |-  ( x  e.  ( Clsd `  J
)  ->  ( X  \  x )  e.  J
)
54adantl 482 . 2  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( X  \  x
)  e.  J )
62cldss 20833 . . . . . . 7  |-  ( x  e.  ( Clsd `  J
)  ->  x  C_  X
)
76ad2antll 765 . . . . . 6  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  x  C_  X
)
8 dfss4 3858 . . . . . 6  |-  ( x 
C_  X  <->  ( X  \  ( X  \  x
) )  =  x )
97, 8sylib 208 . . . . 5  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( X  \  ( X  \  x
) )  =  x )
109eqcomd 2628 . . . 4  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  x  =  ( X  \  ( X  \  x ) ) )
11 difeq2 3722 . . . . 5  |-  ( u  =  ( X  \  x )  ->  ( X  \  u )  =  ( X  \  ( X  \  x ) ) )
1211eqeq2d 2632 . . . 4  |-  ( u  =  ( X  \  x )  ->  (
x  =  ( X 
\  u )  <->  x  =  ( X  \  ( X  \  x ) ) ) )
1310, 12syl5ibrcom 237 . . 3  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( u  =  ( X  \  x )  ->  x  =  ( X  \  u ) ) )
142eltopss 20712 . . . . . . 7  |-  ( ( J  e.  Top  /\  u  e.  J )  ->  u  C_  X )
1514adantrr 753 . . . . . 6  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  u  C_  X
)
16 dfss4 3858 . . . . . 6  |-  ( u 
C_  X  <->  ( X  \  ( X  \  u
) )  =  u )
1715, 16sylib 208 . . . . 5  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( X  \  ( X  \  u
) )  =  u )
1817eqcomd 2628 . . . 4  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  u  =  ( X  \  ( X  \  u ) ) )
19 difeq2 3722 . . . . 5  |-  ( x  =  ( X  \  u )  ->  ( X  \  x )  =  ( X  \  ( X  \  u ) ) )
2019eqeq2d 2632 . . . 4  |-  ( x  =  ( X  \  u )  ->  (
u  =  ( X 
\  x )  <->  u  =  ( X  \  ( X  \  u ) ) ) )
2118, 20syl5ibrcom 237 . . 3  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( x  =  ( X  \  u )  ->  u  =  ( X  \  x ) ) )
2213, 21impbid 202 . 2  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( u  =  ( X  \  x )  <->  x  =  ( X  \  u
) ) )
231, 3, 5, 22f1ocnv2d 6886 1  |-  ( J  e.  Top  ->  ( F : J -1-1-onto-> ( Clsd `  J
)  /\  `' F  =  ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   -1-1-onto->wf1o 5887   ` cfv 5888   Topctop 20698   Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823
This theorem is referenced by:  opncldf3  20890  cmpfi  21211
  Copyright terms: Public domain W3C validator