MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcval Structured version   Visualization version   Unicode version

Theorem oppcval 16373
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcval.b  |-  B  =  ( Base `  C
)
oppcval.h  |-  H  =  ( Hom  `  C
)
oppcval.x  |-  .x.  =  (comp `  C )
oppcval.o  |-  O  =  (oppCat `  C )
Assertion
Ref Expression
oppcval  |-  ( C  e.  V  ->  O  =  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  H >. ) sSet  <.
(comp `  ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) >.
) )
Distinct variable group:    z, u, C
Allowed substitution hints:    B( z, u)    .x. ( z, u)    H( z, u)    O( z, u)    V( z, u)

Proof of Theorem oppcval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 oppcval.o . 2  |-  O  =  (oppCat `  C )
2 elex 3212 . . 3  |-  ( C  e.  V  ->  C  e.  _V )
3 id 22 . . . . . 6  |-  ( c  =  C  ->  c  =  C )
4 fveq2 6191 . . . . . . . . 9  |-  ( c  =  C  ->  ( Hom  `  c )  =  ( Hom  `  C
) )
5 oppcval.h . . . . . . . . 9  |-  H  =  ( Hom  `  C
)
64, 5syl6eqr 2674 . . . . . . . 8  |-  ( c  =  C  ->  ( Hom  `  c )  =  H )
76tposeqd 7355 . . . . . . 7  |-  ( c  =  C  -> tpos  ( Hom  `  c )  = tpos  H
)
87opeq2d 4409 . . . . . 6  |-  ( c  =  C  ->  <. ( Hom  `  ndx ) , tpos  ( Hom  `  c
) >.  =  <. ( Hom  `  ndx ) , tpos 
H >. )
93, 8oveq12d 6668 . . . . 5  |-  ( c  =  C  ->  (
c sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  c ) >. )  =  ( C sSet  <. ( Hom  `  ndx ) , tpos 
H >. ) )
10 fveq2 6191 . . . . . . . . 9  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
11 oppcval.b . . . . . . . . 9  |-  B  =  ( Base `  C
)
1210, 11syl6eqr 2674 . . . . . . . 8  |-  ( c  =  C  ->  ( Base `  c )  =  B )
1312sqxpeqd 5141 . . . . . . 7  |-  ( c  =  C  ->  (
( Base `  c )  X.  ( Base `  c
) )  =  ( B  X.  B ) )
14 fveq2 6191 . . . . . . . . . 10  |-  ( c  =  C  ->  (comp `  c )  =  (comp `  C ) )
15 oppcval.x . . . . . . . . . 10  |-  .x.  =  (comp `  C )
1614, 15syl6eqr 2674 . . . . . . . . 9  |-  ( c  =  C  ->  (comp `  c )  =  .x.  )
1716oveqd 6667 . . . . . . . 8  |-  ( c  =  C  ->  ( <. z ,  ( 2nd `  u ) >. (comp `  c ) ( 1st `  u ) )  =  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) )
1817tposeqd 7355 . . . . . . 7  |-  ( c  =  C  -> tpos  ( <.
z ,  ( 2nd `  u ) >. (comp `  c ) ( 1st `  u ) )  = tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) )
1913, 12, 18mpt2eq123dv 6717 . . . . . 6  |-  ( c  =  C  ->  (
u  e.  ( (
Base `  c )  X.  ( Base `  c
) ) ,  z  e.  ( Base `  c
)  |-> tpos  ( <. z ,  ( 2nd `  u )
>. (comp `  c )
( 1st `  u
) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) )
2019opeq2d 4409 . . . . 5  |-  ( c  =  C  ->  <. (comp ` 
ndx ) ,  ( u  e.  ( (
Base `  c )  X.  ( Base `  c
) ) ,  z  e.  ( Base `  c
)  |-> tpos  ( <. z ,  ( 2nd `  u )
>. (comp `  c )
( 1st `  u
) ) ) >.  =  <. (comp `  ndx ) ,  ( u  e.  ( B  X.  B
) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) >.
)
219, 20oveq12d 6668 . . . 4  |-  ( c  =  C  ->  (
( c sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  c
) >. ) sSet  <. (comp ` 
ndx ) ,  ( u  e.  ( (
Base `  c )  X.  ( Base `  c
) ) ,  z  e.  ( Base `  c
)  |-> tpos  ( <. z ,  ( 2nd `  u )
>. (comp `  c )
( 1st `  u
) ) ) >.
)  =  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  H >. ) sSet  <.
(comp `  ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) >.
) )
22 df-oppc 16372 . . . 4  |- oppCat  =  ( c  e.  _V  |->  ( ( c sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  c
) >. ) sSet  <. (comp ` 
ndx ) ,  ( u  e.  ( (
Base `  c )  X.  ( Base `  c
) ) ,  z  e.  ( Base `  c
)  |-> tpos  ( <. z ,  ( 2nd `  u )
>. (comp `  c )
( 1st `  u
) ) ) >.
) )
23 ovex 6678 . . . 4  |-  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  H >. ) sSet  <.
(comp `  ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) >.
)  e.  _V
2421, 22, 23fvmpt 6282 . . 3  |-  ( C  e.  _V  ->  (oppCat `  C )  =  ( ( C sSet  <. ( Hom  `  ndx ) , tpos 
H >. ) sSet  <. (comp ` 
ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  (
<. z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) ) ) >. ) )
252, 24syl 17 . 2  |-  ( C  e.  V  ->  (oppCat `  C )  =  ( ( C sSet  <. ( Hom  `  ndx ) , tpos 
H >. ) sSet  <. (comp ` 
ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  (
<. z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) ) ) >. ) )
261, 25syl5eq 2668 1  |-  ( C  e.  V  ->  O  =  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  H >. ) sSet  <.
(comp `  ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) >.
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167  tpos ctpos 7351   ndxcnx 15854   sSet csts 15855   Basecbs 15857   Hom chom 15952  compcco 15953  oppCatcoppc 16371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-tpos 7352  df-oppc 16372
This theorem is referenced by:  oppchomfval  16374  oppccofval  16376  oppcbas  16378  catcoppccl  16758
  Copyright terms: Public domain W3C validator