MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccofval Structured version   Visualization version   Unicode version

Theorem oppccofval 16376
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcco.b  |-  B  =  ( Base `  C
)
oppcco.c  |-  .x.  =  (comp `  C )
oppcco.o  |-  O  =  (oppCat `  C )
oppcco.x  |-  ( ph  ->  X  e.  B )
oppcco.y  |-  ( ph  ->  Y  e.  B )
oppcco.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
oppccofval  |-  ( ph  ->  ( <. X ,  Y >. (comp `  O ) Z )  = tpos  ( <. Z ,  Y >.  .x. 
X ) )

Proof of Theorem oppccofval
Dummy variables  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcco.x . . . . 5  |-  ( ph  ->  X  e.  B )
2 elfvex 6221 . . . . . 6  |-  ( X  e.  ( Base `  C
)  ->  C  e.  _V )
3 oppcco.b . . . . . 6  |-  B  =  ( Base `  C
)
42, 3eleq2s 2719 . . . . 5  |-  ( X  e.  B  ->  C  e.  _V )
5 eqid 2622 . . . . . 6  |-  ( Hom  `  C )  =  ( Hom  `  C )
6 oppcco.c . . . . . 6  |-  .x.  =  (comp `  C )
7 oppcco.o . . . . . 6  |-  O  =  (oppCat `  C )
83, 5, 6, 7oppcval 16373 . . . . 5  |-  ( C  e.  _V  ->  O  =  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  C ) >. ) sSet  <.
(comp `  ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) >.
) )
91, 4, 83syl 18 . . . 4  |-  ( ph  ->  O  =  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  C ) >. ) sSet  <.
(comp `  ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) >.
) )
109fveq2d 6195 . . 3  |-  ( ph  ->  (comp `  O )  =  (comp `  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  C ) >. ) sSet  <.
(comp `  ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) >.
) ) )
11 ovex 6678 . . . 4  |-  ( C sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  C ) >. )  e.  _V
12 fvex 6201 . . . . . . 7  |-  ( Base `  C )  e.  _V
133, 12eqeltri 2697 . . . . . 6  |-  B  e. 
_V
1413, 13xpex 6962 . . . . 5  |-  ( B  X.  B )  e. 
_V
1514, 13mpt2ex 7247 . . . 4  |-  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <.
z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) ) )  e.  _V
16 ccoid 16077 . . . . 5  |- comp  = Slot  (comp ` 
ndx )
1716setsid 15914 . . . 4  |-  ( ( ( C sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  C
) >. )  e.  _V  /\  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) )  e. 
_V )  ->  (
u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  (
<. z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) ) )  =  (comp `  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  C
) >. ) sSet  <. (comp ` 
ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  (
<. z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) ) ) >. ) ) )
1811, 15, 17mp2an 708 . . 3  |-  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  ( <.
z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) ) )  =  (comp `  ( ( C sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  C
) >. ) sSet  <. (comp ` 
ndx ) ,  ( u  e.  ( B  X.  B ) ,  z  e.  B  |-> tpos  (
<. z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) ) ) >. ) )
1910, 18syl6eqr 2674 . 2  |-  ( ph  ->  (comp `  O )  =  ( u  e.  ( B  X.  B
) ,  z  e.  B  |-> tpos  ( <. z ,  ( 2nd `  u )
>.  .x.  ( 1st `  u
) ) ) )
20 simprr 796 . . . . 5  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  z  =  Z )
21 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  u  =  <. X ,  Y >. )
2221fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  u )  =  ( 2nd `  <. X ,  Y >. )
)
231adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  X  e.  B )
24 oppcco.y . . . . . . . 8  |-  ( ph  ->  Y  e.  B )
2524adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  Y  e.  B )
26 op2ndg 7181 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
2723, 25, 26syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
2822, 27eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  u )  =  Y )
2920, 28opeq12d 4410 . . . 4  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  <. z ,  ( 2nd `  u
) >.  =  <. Z ,  Y >. )
3021fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 1st `  u )  =  ( 1st `  <. X ,  Y >. )
)
31 op1stg 7180 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 1st `  <. X ,  Y >. )  =  X )
3223, 25, 31syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 1st `  <. X ,  Y >. )  =  X )
3330, 32eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 1st `  u )  =  X )
3429, 33oveq12d 6668 . . 3  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( <. z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) )  =  ( <. Z ,  Y >.  .x.  X )
)
3534tposeqd 7355 . 2  |-  ( (
ph  /\  ( u  =  <. X ,  Y >.  /\  z  =  Z ) )  -> tpos  ( <.
z ,  ( 2nd `  u ) >.  .x.  ( 1st `  u ) )  = tpos  ( <. Z ,  Y >.  .x.  X )
)
36 opelxpi 5148 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
371, 24, 36syl2anc 693 . 2  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
38 oppcco.z . 2  |-  ( ph  ->  Z  e.  B )
39 ovex 6678 . . . 4  |-  ( <. Z ,  Y >.  .x. 
X )  e.  _V
4039tposex 7386 . . 3  |- tpos  ( <. Z ,  Y >.  .x. 
X )  e.  _V
4140a1i 11 . 2  |-  ( ph  -> tpos  ( <. Z ,  Y >.  .x.  X )  e. 
_V )
4219, 35, 37, 38, 41ovmpt2d 6788 1  |-  ( ph  ->  ( <. X ,  Y >. (comp `  O ) Z )  = tpos  ( <. Z ,  Y >.  .x. 
X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167  tpos ctpos 7351   ndxcnx 15854   sSet csts 15855   Basecbs 15857   Hom chom 15952  compcco 15953  oppCatcoppc 16371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-dec 11494  df-ndx 15860  df-slot 15861  df-sets 15864  df-cco 15967  df-oppc 16372
This theorem is referenced by:  oppcco  16377
  Copyright terms: Public domain W3C validator