| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthwiener | Structured version Visualization version Unicode version | ||
| Description: Justification theorem for the ordered pair definition in Norbert Wiener, "A simplification of the logic of relations," Proc. of the Cambridge Philos. Soc., 1914, vol. 17, pp.387-390. It is also shown as a definition in [Enderton] p. 36 and as Exercise 4.8(b) of [Mendelson] p. 230. It is meaningful only for classes that exist as sets (i.e. are not proper classes). See df-op 4184 for other ordered pair definitions. (Contributed by NM, 28-Sep-2003.) |
| Ref | Expression |
|---|---|
| opthw.1 |
|
| opthw.2 |
|
| Ref | Expression |
|---|---|
| opthwiener |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 |
. . . . . . 7
| |
| 2 | snex 4908 |
. . . . . . . . . . . 12
| |
| 3 | 2 | prid2 4298 |
. . . . . . . . . . 11
|
| 4 | eleq2 2690 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | mpbii 223 |
. . . . . . . . . 10
|
| 6 | 2 | elpr 4198 |
. . . . . . . . . 10
|
| 7 | 5, 6 | sylib 208 |
. . . . . . . . 9
|
| 8 | 0ex 4790 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | prid2 4298 |
. . . . . . . . . . . 12
|
| 10 | opthw.2 |
. . . . . . . . . . . . . 14
| |
| 11 | 10 | snnz 4309 |
. . . . . . . . . . . . 13
|
| 12 | 8 | elsn 4192 |
. . . . . . . . . . . . . 14
|
| 13 | eqcom 2629 |
. . . . . . . . . . . . . 14
| |
| 14 | 12, 13 | bitri 264 |
. . . . . . . . . . . . 13
|
| 15 | 11, 14 | nemtbir 2889 |
. . . . . . . . . . . 12
|
| 16 | nelneq2 2726 |
. . . . . . . . . . . 12
| |
| 17 | 9, 15, 16 | mp2an 708 |
. . . . . . . . . . 11
|
| 18 | eqcom 2629 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | mtbi 312 |
. . . . . . . . . 10
|
| 20 | biorf 420 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . 9
|
| 22 | 7, 21 | sylibr 224 |
. . . . . . . 8
|
| 23 | 22 | preq2d 4275 |
. . . . . . 7
|
| 24 | 1, 23 | eqtr4d 2659 |
. . . . . 6
|
| 25 | prex 4909 |
. . . . . . 7
| |
| 26 | prex 4909 |
. . . . . . 7
| |
| 27 | 25, 26 | preqr1 4379 |
. . . . . 6
|
| 28 | 24, 27 | syl 17 |
. . . . 5
|
| 29 | snex 4908 |
. . . . . 6
| |
| 30 | snex 4908 |
. . . . . 6
| |
| 31 | 29, 30 | preqr1 4379 |
. . . . 5
|
| 32 | 28, 31 | syl 17 |
. . . 4
|
| 33 | opthw.1 |
. . . . 5
| |
| 34 | 33 | sneqr 4371 |
. . . 4
|
| 35 | 32, 34 | syl 17 |
. . 3
|
| 36 | snex 4908 |
. . . . . 6
| |
| 37 | 36 | sneqr 4371 |
. . . . 5
|
| 38 | 22, 37 | syl 17 |
. . . 4
|
| 39 | 10 | sneqr 4371 |
. . . 4
|
| 40 | 38, 39 | syl 17 |
. . 3
|
| 41 | 35, 40 | jca 554 |
. 2
|
| 42 | sneq 4187 |
. . . . 5
| |
| 43 | 42 | preq1d 4274 |
. . . 4
|
| 44 | 43 | preq1d 4274 |
. . 3
|
| 45 | sneq 4187 |
. . . . 5
| |
| 46 | sneq 4187 |
. . . . 5
| |
| 47 | 45, 46 | syl 17 |
. . . 4
|
| 48 | 47 | preq2d 4275 |
. . 3
|
| 49 | 44, 48 | sylan9eq 2676 |
. 2
|
| 50 | 41, 49 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |