Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineunray Structured version   Visualization version   Unicode version

Theorem lineunray 32254
Description: A line is composed of a point and the two rays emerging from it. Theorem 6.15 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineunray  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( P  Btwn  <. Q ,  R >.  ->  ( PLine Q )  =  ( ( ( PRay Q
)  u.  { P } )  u.  ( PRay R ) ) ) )

Proof of Theorem lineunray
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  N  e.  NN )
2 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
3 simpl21 1139 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  P  e.  ( EE `  N ) )
4 simpl22 1140 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  Q  e.  ( EE `  N ) )
5 brcolinear 32166 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( x  Colinear  <. P ,  Q >. 
<->  ( x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
61, 2, 3, 4, 5syl13anc 1328 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( x  Colinear  <. P ,  Q >. 
<->  ( x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
76adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
8 olc 399 . . . . . . . . . . . . . 14  |-  ( x 
Btwn  <. P ,  Q >.  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
98orcd 407 . . . . . . . . . . . . 13  |-  ( x 
Btwn  <. P ,  Q >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
109a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Btwn  <. P ,  Q >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
11 simpl3l 1116 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  P  =/=  Q )
1211necomd 2849 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  Q  =/=  P )
1312adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  Q  =/=  P )
14 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. Q ,  R >. )
15 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
1613, 14, 153jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( Q  =/=  P  /\  P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )
17 simpl23 1141 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  R  e.  ( EE `  N ) )
18 btwnconn2 32209 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( Q  =/=  P  /\  P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
191, 4, 3, 17, 2, 18syl122anc 1335 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( Q  =/= 
P  /\  P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
2019adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( ( Q  =/=  P  /\  P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
2116, 20mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )
2221olcd 408 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
2322expr 643 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( P  Btwn  <. Q ,  x >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
24 btwncom 32121 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( Q  Btwn  <. x ,  P >.  <->  Q  Btwn  <. P ,  x >. ) )
251, 4, 2, 3, 24syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( Q  Btwn  <. x ,  P >.  <->  Q  Btwn  <. P ,  x >. ) )
26 orc 400 . . . . . . . . . . . . . . 15  |-  ( Q 
Btwn  <. P ,  x >.  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
2726orcd 407 . . . . . . . . . . . . . 14  |-  ( Q 
Btwn  <. P ,  x >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
2825, 27syl6bi 243 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( Q  Btwn  <. x ,  P >.  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
2928adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( Q  Btwn  <. x ,  P >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
3010, 23, 293jaod 1392 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. )  ->  (
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
317, 30sylbid 230 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  -> 
( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
32 olc 399 . . . . . . . . . 10  |-  ( ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  -> 
( x  =  P  \/  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
3331, 32syl6 35 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  -> 
( x  =  P  \/  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
34 colineartriv1 32174 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) )  ->  P  Colinear  <. P ,  Q >. )
351, 3, 4, 34syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  P  Colinear  <. P ,  Q >. )
36 breq1 4656 . . . . . . . . . . . 12  |-  ( x  =  P  ->  (
x  Colinear  <. P ,  Q >.  <-> 
P  Colinear  <. P ,  Q >. ) )
3735, 36syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( x  =  P  ->  x  Colinear  <. P ,  Q >. ) )
3837adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  =  P  ->  x  Colinear  <. P ,  Q >. )
)
39 btwncolinear3 32178 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( Q  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
401, 3, 2, 4, 39syl13anc 1328 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( Q  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
41 btwncolinear5 32180 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
421, 3, 4, 2, 41syl13anc 1328 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
4340, 42jaod 395 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  ->  x  Colinear  <. P ,  Q >. ) )
4443adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  ->  x  Colinear  <. P ,  Q >. ) )
45 simpl3r 1117 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  P  =/=  R )
4645adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  P  =/=  R )
47 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  P  Btwn  <. Q ,  R >. )
48 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  R  Btwn  <. P ,  x >. )
4946, 47, 483jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  ( P  =/=  R  /\  P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )
50 btwnouttr 32131 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  R  /\  P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
511, 4, 3, 17, 2, 50syl122anc 1335 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( P  =/= 
R  /\  P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
5251adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  ( ( P  =/=  R  /\  P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
5349, 52mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
54 btwncolinear4 32179 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
551, 4, 2, 3, 54syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
5655adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
5753, 56mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  x  Colinear  <. P ,  Q >. )
5857expr 643 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( R  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
59 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  x  Btwn  <. P ,  R >. )
601, 2, 3, 17, 59btwncomand 32122 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  x  Btwn  <. R ,  P >. )
61 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  P  Btwn  <. Q ,  R >. )
621, 3, 4, 17, 61btwncomand 32122 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  P  Btwn  <. R ,  Q >. )
631, 17, 2, 3, 4, 60, 62btwnexch3and 32128 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  P  Btwn  <.
x ,  Q >. )
64 btwncolinear2 32177 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. )
)
651, 2, 4, 3, 64syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. )
)
6665adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  ( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
6763, 66mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  x  Colinear  <. P ,  Q >. )
6867expr 643 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Btwn  <. P ,  R >.  ->  x  Colinear  <. P ,  Q >. ) )
6958, 68jaod 395 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. )  ->  x  Colinear  <. P ,  Q >. ) )
7044, 69jaod 395 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  ->  x  Colinear  <. P ,  Q >. ) )
7138, 70jaod 395 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
x  =  P  \/  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  ->  x  Colinear  <. P ,  Q >. ) )
7233, 71impbid 202 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  =  P  \/  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
73 pm5.63 959 . . . . . . . . 9  |-  ( ( x  =  P  \/  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( x  =  P  \/  ( -.  x  =  P  /\  (
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
74 df-ne 2795 . . . . . . . . . . . 12  |-  ( x  =/=  P  <->  -.  x  =  P )
7574anbi1i 731 . . . . . . . . . . 11  |-  ( ( x  =/=  P  /\  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( -.  x  =  P  /\  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
76 andi 911 . . . . . . . . . . 11  |-  ( ( x  =/=  P  /\  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( ( x  =/= 
P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
7775, 76bitr3i 266 . . . . . . . . . 10  |-  ( ( -.  x  =  P  /\  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( ( x  =/= 
P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
7877orbi2i 541 . . . . . . . . 9  |-  ( ( x  =  P  \/  ( -.  x  =  P  /\  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  <->  ( x  =  P  \/  ( ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
7973, 78bitri 264 . . . . . . . 8  |-  ( ( x  =  P  \/  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( x  =  P  \/  ( ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
8072, 79syl6bb 276 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  =  P  \/  ( ( x  =/= 
P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) ) )
81 broutsideof2 32229 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. Q ,  x >.  <-> 
( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
821, 3, 4, 2, 81syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( POutsideOf <. Q ,  x >.  <-> 
( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
83 3simpc 1060 . . . . . . . . . . . 12  |-  ( ( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  -> 
( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
84 simpl3l 1116 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  ->  P  =/=  Q )
8584necomd 2849 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  ->  Q  =/=  P )
86 simprrl 804 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  ->  x  =/=  P )
87 simprrr 805 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  -> 
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
8885, 86, 873jca 1242 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  -> 
( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
8988expr 643 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( x  =/= 
P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  -> 
( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
9083, 89impbid2 216 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( Q  =/= 
P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  <->  ( x  =/=  P  /\  ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
9182, 90bitrd 268 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( POutsideOf <. Q ,  x >.  <-> 
( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
92 broutsideof2 32229 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. R ,  x >.  <-> 
( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
931, 3, 17, 2, 92syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( POutsideOf <. R ,  x >.  <-> 
( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
94 3simpc 1060 . . . . . . . . . . . 12  |-  ( ( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  -> 
( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
95 simpl3r 1117 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  ->  P  =/=  R )
9695necomd 2849 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  ->  R  =/=  P )
97 simprrl 804 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  ->  x  =/=  P )
98 simprrr 805 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  -> 
( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )
9996, 97, 983jca 1242 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  -> 
( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
10099expr 643 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( x  =/= 
P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  -> 
( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
10194, 100impbid2 216 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( R  =/= 
P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  <->  ( x  =/=  P  /\  ( R 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
10293, 101bitrd 268 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( POutsideOf <. R ,  x >.  <-> 
( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
10391, 102orbi12d 746 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. )  <->  ( (
x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
104103adantr 481 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( ( POutsideOf
<. Q ,  x >.  \/  POutsideOf <. R ,  x >. )  <->  ( ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
105104orbi2d 738 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
x  =  P  \/  ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. ) )  <->  ( x  =  P  \/  (
( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) ) )
10680, 105bitr4d 271 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  =  P  \/  ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. ) ) ) )
107 orcom 402 . . . . . . 7  |-  ( ( x  =  P  \/  ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. ) )  <->  ( ( POutsideOf
<. Q ,  x >.  \/  POutsideOf <. R ,  x >. )  \/  x  =  P ) )
108 or32 549 . . . . . . 7  |-  ( ( ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. )  \/  x  =  P )  <->  ( ( POutsideOf
<. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) )
109107, 108bitri 264 . . . . . 6  |-  ( ( x  =  P  \/  ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. ) )  <->  ( ( POutsideOf
<. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) )
110106, 109syl6bb 276 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) ) )
111110an32s 846 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) ) )
112111rabbidva 3188 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. }  =  { x  e.  ( EE `  N )  |  ( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) } )
113 simp1 1061 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  N  e.  NN )
114 simp21 1094 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  P  e.  ( EE `  N ) )
115 simp22 1095 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  Q  e.  ( EE `  N ) )
116 simp3l 1089 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  P  =/=  Q )
117 fvline2 32253 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. } )
118113, 114, 115, 116, 117syl13anc 1328 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( PLine Q )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. } )
119118adantr 481 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( PLine Q )  =  {
x  e.  ( EE
`  N )  |  x  Colinear  <. P ,  Q >. } )
120 fvray 32248 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PRay Q )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. Q ,  x >. } )
121113, 114, 115, 116, 120syl13anc 1328 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( PRay Q )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. Q ,  x >. } )
122 rabsn 4256 . . . . . . . . 9  |-  ( P  e.  ( EE `  N )  ->  { x  e.  ( EE `  N
)  |  x  =  P }  =  { P } )
123114, 122syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  { x  e.  ( EE `  N )  |  x  =  P }  =  { P } )
124123eqcomd 2628 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  { P }  =  {
x  e.  ( EE
`  N )  |  x  =  P }
)
125121, 124uneq12d 3768 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( ( PRay Q
)  u.  { P } )  =  ( { x  e.  ( EE `  N )  |  POutsideOf <. Q ,  x >. }  u.  { x  e.  ( EE `  N
)  |  x  =  P } ) )
126 simp23 1096 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  R  e.  ( EE `  N ) )
127 simp3r 1090 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  P  =/=  R )
128 fvray 32248 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  P  =/=  R ) )  -> 
( PRay R )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. R ,  x >. } )
129113, 114, 126, 127, 128syl13anc 1328 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( PRay R )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. R ,  x >. } )
130125, 129uneq12d 3768 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( ( ( PRay Q )  u.  { P } )  u.  ( PRay R ) )  =  ( ( { x  e.  ( EE `  N
)  |  POutsideOf <. Q ,  x >. }  u.  {
x  e.  ( EE
`  N )  |  x  =  P }
)  u.  { x  e.  ( EE `  N
)  |  POutsideOf <. R ,  x >. } ) )
131130adantr 481 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
( PRay Q )  u.  { P }
)  u.  ( PRay R ) )  =  ( ( { x  e.  ( EE `  N
)  |  POutsideOf <. Q ,  x >. }  u.  {
x  e.  ( EE
`  N )  |  x  =  P }
)  u.  { x  e.  ( EE `  N
)  |  POutsideOf <. R ,  x >. } ) )
132 unrab 3898 . . . . . 6  |-  ( { x  e.  ( EE
`  N )  |  POutsideOf <. Q ,  x >. }  u.  { x  e.  ( EE `  N
)  |  x  =  P } )  =  { x  e.  ( EE `  N )  |  ( POutsideOf <. Q ,  x >.  \/  x  =  P ) }
133132uneq1i 3763 . . . . 5  |-  ( ( { x  e.  ( EE `  N )  |  POutsideOf <. Q ,  x >. }  u.  { x  e.  ( EE `  N
)  |  x  =  P } )  u. 
{ x  e.  ( EE `  N )  |  POutsideOf <. R ,  x >. } )  =  ( { x  e.  ( EE `  N )  |  ( POutsideOf <. Q ,  x >.  \/  x  =  P ) }  u.  { x  e.  ( EE
`  N )  |  POutsideOf <. R ,  x >. } )
134 unrab 3898 . . . . 5  |-  ( { x  e.  ( EE
`  N )  |  ( POutsideOf <. Q ,  x >.  \/  x  =  P ) }  u.  {
x  e.  ( EE
`  N )  |  POutsideOf <. R ,  x >. } )  =  {
x  e.  ( EE
`  N )  |  ( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) }
135133, 134eqtri 2644 . . . 4  |-  ( ( { x  e.  ( EE `  N )  |  POutsideOf <. Q ,  x >. }  u.  { x  e.  ( EE `  N
)  |  x  =  P } )  u. 
{ x  e.  ( EE `  N )  |  POutsideOf <. R ,  x >. } )  =  {
x  e.  ( EE
`  N )  |  ( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) }
136131, 135syl6eq 2672 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
( PRay Q )  u.  { P }
)  u.  ( PRay R ) )  =  { x  e.  ( EE `  N )  |  ( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) } )
137112, 119, 1363eqtr4d 2666 . 2  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( PLine Q )  =  ( ( ( PRay Q
)  u.  { P } )  u.  ( PRay R ) ) )
138137ex 450 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( P  Btwn  <. Q ,  R >.  ->  ( PLine Q )  =  ( ( ( PRay Q
)  u.  { P } )  u.  ( PRay R ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    u. cun 3572   {csn 4177   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   NNcn 11020   EEcee 25768    Btwn cbtwn 25769    Colinear ccolin 32144  OutsideOfcoutsideof 32226  Linecline2 32241  Raycray 32242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-ofs 32090  df-colinear 32146  df-ifs 32147  df-cgr3 32148  df-fs 32149  df-outsideof 32227  df-line2 32244  df-ray 32245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator