| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ontgval | Structured version Visualization version Unicode version | ||
| Description: The topology generated
from an ordinal number |
| Ref | Expression |
|---|---|
| ontgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg4i 20764 |
. . . . . 6
| |
| 2 | inex1g 4801 |
. . . . . . 7
| |
| 3 | onss 6990 |
. . . . . . . 8
| |
| 4 | ssinss1 3841 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
|
| 6 | ssonuni 6986 |
. . . . . . 7
| |
| 7 | 2, 5, 6 | sylc 65 |
. . . . . 6
|
| 8 | eleq1 2689 |
. . . . . . 7
| |
| 9 | 8 | biimprd 238 |
. . . . . 6
|
| 10 | 1, 7, 9 | syl2imc 41 |
. . . . 5
|
| 11 | onuni 6993 |
. . . . . 6
| |
| 12 | suceloni 7013 |
. . . . . 6
| |
| 13 | 11, 12 | syl 17 |
. . . . 5
|
| 14 | 10, 13 | jctird 567 |
. . . 4
|
| 15 | tg1 20768 |
. . . . . 6
| |
| 16 | 15 | a1i 11 |
. . . . 5
|
| 17 | sucidg 5803 |
. . . . . 6
| |
| 18 | 11, 17 | syl 17 |
. . . . 5
|
| 19 | 16, 18 | jctird 567 |
. . . 4
|
| 20 | ontr2 5772 |
. . . 4
| |
| 21 | 14, 19, 20 | syl6c 70 |
. . 3
|
| 22 | elsuci 5791 |
. . . 4
| |
| 23 | eloni 5733 |
. . . . . . . 8
| |
| 24 | orduniss 5821 |
. . . . . . . 8
| |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
|
| 26 | bastg 20770 |
. . . . . . 7
| |
| 27 | 25, 26 | sstrd 3613 |
. . . . . 6
|
| 28 | 27 | sseld 3602 |
. . . . 5
|
| 29 | ssid 3624 |
. . . . . . 7
| |
| 30 | eltg3i 20765 |
. . . . . . 7
| |
| 31 | 29, 30 | mpan2 707 |
. . . . . 6
|
| 32 | eleq1a 2696 |
. . . . . 6
| |
| 33 | 31, 32 | syl 17 |
. . . . 5
|
| 34 | 28, 33 | jaod 395 |
. . . 4
|
| 35 | 22, 34 | syl5 34 |
. . 3
|
| 36 | 21, 35 | impbid 202 |
. 2
|
| 37 | 36 | eqrdv 2620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 |
| This theorem is referenced by: ontgsucval 32431 |
| Copyright terms: Public domain | W3C validator |