MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orddif Structured version   Visualization version   Unicode version

Theorem orddif 5820
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 5762 . 2  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
2 disj3 4021 . . 3  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( A  \  { A } ) )
3 df-suc 5729 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
43difeq1i 3724 . . . . 5  |-  ( suc 
A  \  { A } )  =  ( ( A  u.  { A } )  \  { A } )
5 difun2 4048 . . . . 5  |-  ( ( A  u.  { A } )  \  { A } )  =  ( A  \  { A } )
64, 5eqtri 2644 . . . 4  |-  ( suc 
A  \  { A } )  =  ( A  \  { A } )
76eqeq2i 2634 . . 3  |-  ( A  =  ( suc  A  \  { A } )  <-> 
A  =  ( A 
\  { A }
) )
82, 7bitr4i 267 . 2  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( suc  A  \  { A } ) )
91, 8sylib 208 1  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   Ord word 5722   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073  df-we 5075  df-ord 5726  df-suc 5729
This theorem is referenced by:  phplem3  8141  phplem4  8142  pssnn  8178
  Copyright terms: Public domain W3C validator