MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniorsuc Structured version   Visualization version   Unicode version

Theorem orduniorsuc 7030
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniorsuc  |-  ( Ord 
A  ->  ( A  =  U. A  \/  A  =  suc  U. A ) )

Proof of Theorem orduniorsuc
StepHypRef Expression
1 orduniss 5821 . . . . . 6  |-  ( Ord 
A  ->  U. A  C_  A )
2 orduni 6994 . . . . . . . 8  |-  ( Ord 
A  ->  Ord  U. A
)
3 ordelssne 5750 . . . . . . . 8  |-  ( ( Ord  U. A  /\  Ord  A )  ->  ( U. A  e.  A  <->  ( U. A  C_  A  /\  U. A  =/=  A
) ) )
42, 3mpancom 703 . . . . . . 7  |-  ( Ord 
A  ->  ( U. A  e.  A  <->  ( U. A  C_  A  /\  U. A  =/=  A ) ) )
54biimprd 238 . . . . . 6  |-  ( Ord 
A  ->  ( ( U. A  C_  A  /\  U. A  =/=  A )  ->  U. A  e.  A
) )
61, 5mpand 711 . . . . 5  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  U. A  e.  A ) )
7 ordsucss 7018 . . . . 5  |-  ( Ord 
A  ->  ( U. A  e.  A  ->  suc  U. A  C_  A ) )
86, 7syld 47 . . . 4  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  suc  U. A  C_  A )
)
9 ordsucuni 7029 . . . 4  |-  ( Ord 
A  ->  A  C_  suc  U. A )
108, 9jctild 566 . . 3  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  ( A  C_  suc  U. A  /\  suc  U. A  C_  A ) ) )
11 df-ne 2795 . . . 4  |-  ( A  =/=  U. A  <->  -.  A  =  U. A )
12 necom 2847 . . . 4  |-  ( A  =/=  U. A  <->  U. A  =/= 
A )
1311, 12bitr3i 266 . . 3  |-  ( -.  A  =  U. A  <->  U. A  =/=  A )
14 eqss 3618 . . 3  |-  ( A  =  suc  U. A  <->  ( A  C_  suc  U. A  /\  suc  U. A  C_  A ) )
1510, 13, 143imtr4g 285 . 2  |-  ( Ord 
A  ->  ( -.  A  =  U. A  ->  A  =  suc  U. A
) )
1615orrd 393 1  |-  ( Ord 
A  ->  ( A  =  U. A  \/  A  =  suc  U. A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   U.cuni 4436   Ord word 5722   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  onuniorsuci  7039  oeeulem  7681  cantnfp1lem2  8576  cantnflem1  8586  cnfcom2lem  8598  dfac12lem1  8965  dfac12lem2  8966  ttukeylem3  9333  ttukeylem5  9335  ttukeylem6  9336  ordtoplem  32434  ordcmp  32446  onsucuni3  33215  aomclem5  37628  onsetreclem3  42450
  Copyright terms: Public domain W3C validator