MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt3rabdm Structured version   Visualization version   Unicode version

Theorem ovmpt3rabdm 6892
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019.)
Hypotheses
Ref Expression
ovmpt3rab1.o  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  ( z  e.  M  |->  { a  e.  N  |  ph } ) )
ovmpt3rab1.m  |-  ( ( x  =  X  /\  y  =  Y )  ->  M  =  K )
ovmpt3rab1.n  |-  ( ( x  =  X  /\  y  =  Y )  ->  N  =  L )
Assertion
Ref Expression
ovmpt3rabdm  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  K  e.  U
)  /\  L  e.  T )  ->  dom  ( X O Y )  =  K )
Distinct variable groups:    x, K, y, z    L, a, x, y    N, a    x, V, y    x, W, y   
x, U, y    X, a, x, y, z    Y, a, x, y, z    z, L    z, T    z, U    z, V    z, W
Allowed substitution hints:    ph( x, y, z, a)    T( x, y, a)    U( a)    K( a)    M( x, y, z, a)    N( x, y, z)    O( x, y, z, a)    V( a)    W( a)

Proof of Theorem ovmpt3rabdm
StepHypRef Expression
1 ovmpt3rab1.o . . . . 5  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  ( z  e.  M  |->  { a  e.  N  |  ph } ) )
2 ovmpt3rab1.m . . . . 5  |-  ( ( x  =  X  /\  y  =  Y )  ->  M  =  K )
3 ovmpt3rab1.n . . . . 5  |-  ( ( x  =  X  /\  y  =  Y )  ->  N  =  L )
4 sbceq1a 3446 . . . . . 6  |-  ( y  =  Y  ->  ( ph 
<-> 
[. Y  /  y ]. ph ) )
5 sbceq1a 3446 . . . . . 6  |-  ( x  =  X  ->  ( [. Y  /  y ]. ph  <->  [. X  /  x ]. [. Y  /  y ]. ph ) )
64, 5sylan9bbr 737 . . . . 5  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  [. X  /  x ]. [. Y  / 
y ]. ph ) )
7 nfsbc1v 3455 . . . . 5  |-  F/ x [. X  /  x ]. [. Y  /  y ]. ph
8 nfcv 2764 . . . . . 6  |-  F/_ y X
9 nfsbc1v 3455 . . . . . 6  |-  F/ y
[. Y  /  y ]. ph
108, 9nfsbc 3457 . . . . 5  |-  F/ y
[. X  /  x ]. [. Y  /  y ]. ph
111, 2, 3, 6, 7, 10ovmpt3rab1 6891 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  K  e.  U )  ->  ( X O Y )  =  ( z  e.  K  |->  { a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph }
) )
1211adantr 481 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  K  e.  U
)  /\  L  e.  T )  ->  ( X O Y )  =  ( z  e.  K  |->  { a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph } ) )
1312dmeqd 5326 . 2  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  K  e.  U
)  /\  L  e.  T )  ->  dom  ( X O Y )  =  dom  ( z  e.  K  |->  { a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph }
) )
14 rabexg 4812 . . . . 5  |-  ( L  e.  T  ->  { a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph }  e.  _V )
1514adantl 482 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  K  e.  U
)  /\  L  e.  T )  ->  { a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph }  e.  _V )
1615ralrimivw 2967 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  K  e.  U
)  /\  L  e.  T )  ->  A. z  e.  K  { a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph }  e.  _V )
17 dmmptg 5632 . . 3  |-  ( A. z  e.  K  {
a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph }  e.  _V  ->  dom  ( z  e.  K  |->  { a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph }
)  =  K )
1816, 17syl 17 . 2  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  K  e.  U
)  /\  L  e.  T )  ->  dom  ( z  e.  K  |->  { a  e.  L  |  [. X  /  x ]. [. Y  /  y ]. ph } )  =  K )
1913, 18eqtrd 2656 1  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  K  e.  U
)  /\  L  e.  T )  ->  dom  ( X O Y )  =  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   [.wsbc 3435    |-> cmpt 4729   dom cdm 5114  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  elovmpt3rab1  6893
  Copyright terms: Public domain W3C validator