![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version Unicode version |
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
Ref | Expression |
---|---|
dmmptg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ralimi 2952 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | rabid2 3118 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylibr 224 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | dmmpt 5630 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | syl6reqr 2675 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
This theorem is referenced by: ovmpt3rabdm 6892 suppssov1 7327 suppssfv 7331 iinon 7437 onoviun 7440 noinfep 8557 cantnfdm 8561 axcc2lem 9258 negfi 10971 ccatalpha 13375 swrd0 13434 o1lo1 14268 o1lo12 14269 lo1mptrcl 14352 o1mptrcl 14353 o1add2 14354 o1mul2 14355 o1sub2 14356 lo1add 14357 lo1mul 14358 o1dif 14360 rlimneg 14377 lo1le 14382 rlimno1 14384 o1fsum 14545 divsfval 16207 iscnp2 21043 ptcnplem 21424 xkoinjcn 21490 fbasrn 21688 prdsdsf 22172 ressprdsds 22176 mbfmptcl 23404 mbfdm2 23405 dvmptcl 23722 dvmptadd 23723 dvmptmul 23724 dvmptres2 23725 dvmptcmul 23727 dvmptcj 23731 dvmptco 23735 rolle 23753 dvlip 23756 dvlipcn 23757 dvle 23770 dvivthlem1 23771 dvivth 23773 dvfsumle 23784 dvfsumge 23785 dvmptrecl 23787 dvfsumlem2 23790 pserdv 24183 logtayl 24406 relogbf 24529 rlimcxp 24700 o1cxp 24701 gsummpt2co 29780 psgnfzto1stlem 29850 measdivcstOLD 30287 probfinmeasbOLD 30490 probmeasb 30492 dstrvprob 30533 cvmsss2 31256 sdclem2 33538 dmmzp 37296 rnmpt0 39412 dvmptresicc 40134 dvcosax 40141 dvnprodlem3 40163 itgcoscmulx 40185 stoweidlem27 40244 dirkeritg 40319 fourierdlem16 40340 fourierdlem21 40345 fourierdlem22 40346 fourierdlem39 40363 fourierdlem57 40380 fourierdlem58 40381 fourierdlem60 40383 fourierdlem61 40384 fourierdlem73 40396 fourierdlem83 40406 subsaliuncllem 40575 0ome 40743 hoi2toco 40821 elbigofrcl 42344 |
Copyright terms: Public domain | W3C validator |