Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimconstlt0 Structured version   Visualization version   Unicode version

Theorem pimconstlt0 40914
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound smaller or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimconstlt0.x  |-  F/ x ph
pimconstlt0.b  |-  ( ph  ->  B  e.  RR )
pimconstlt0.f  |-  F  =  ( x  e.  A  |->  B )
pimconstlt0.c  |-  ( ph  ->  C  e.  RR* )
pimconstlt0.l  |-  ( ph  ->  C  <_  B )
Assertion
Ref Expression
pimconstlt0  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  <  C }  =  (/) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    C( x)    F( x)

Proof of Theorem pimconstlt0
StepHypRef Expression
1 pimconstlt0.x . . 3  |-  F/ x ph
2 pimconstlt0.l . . . . . . 7  |-  ( ph  ->  C  <_  B )
32adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  <_  B )
4 pimconstlt0.f . . . . . . . 8  |-  F  =  ( x  e.  A  |->  B )
54a1i 11 . . . . . . 7  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
6 pimconstlt0.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
76adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
85, 7fvmpt2d 6293 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
93, 8breqtrrd 4681 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  <_  ( F `  x
) )
10 pimconstlt0.c . . . . . . 7  |-  ( ph  ->  C  e.  RR* )
1110adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR* )
128, 7eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  RR )
1312rexrd 10089 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  RR* )
1411, 13xrlenltd 10104 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( C  <_  ( F `  x )  <->  -.  ( F `  x )  <  C ) )
159, 14mpbid 222 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -.  ( F `  x )  <  C )
1615ex 450 . . 3  |-  ( ph  ->  ( x  e.  A  ->  -.  ( F `  x )  <  C
) )
171, 16ralrimi 2957 . 2  |-  ( ph  ->  A. x  e.  A  -.  ( F `  x
)  <  C )
18 rabeq0 3957 . 2  |-  ( { x  e.  A  | 
( F `  x
)  <  C }  =  (/)  <->  A. x  e.  A  -.  ( F `  x
)  <  C )
1917, 18sylibr 224 1  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  <  C }  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   {crab 2916   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-xr 10078  df-le 10080
This theorem is referenced by:  smfconst  40958
  Copyright terms: Public domain W3C validator