| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimalegt | Structured version Visualization version Unicode version | ||
| Description: The preimage of a left-open, unbounded above interval, is the complement of a right-close, unbounded below interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| preimalegt.x |
|
| preimalegt.b |
|
| preimalegt.c |
|
| Ref | Expression |
|---|---|
| preimalegt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimalegt.x |
. . 3
| |
| 2 | eldifi 3732 |
. . . . . . . 8
| |
| 3 | 2 | adantl 482 |
. . . . . . 7
|
| 4 | 2 | anim1i 592 |
. . . . . . . . . . 11
|
| 5 | rabid 3116 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | sylibr 224 |
. . . . . . . . . 10
|
| 7 | eldifn 3733 |
. . . . . . . . . . 11
| |
| 8 | 7 | adantr 481 |
. . . . . . . . . 10
|
| 9 | 6, 8 | pm2.65da 600 |
. . . . . . . . 9
|
| 10 | 9 | adantl 482 |
. . . . . . . 8
|
| 11 | preimalegt.c |
. . . . . . . . . 10
| |
| 12 | 11 | adantr 481 |
. . . . . . . . 9
|
| 13 | preimalegt.b |
. . . . . . . . . 10
| |
| 14 | 3, 13 | syldan 487 |
. . . . . . . . 9
|
| 15 | 12, 14 | xrltnled 39579 |
. . . . . . . 8
|
| 16 | 10, 15 | mpbird 247 |
. . . . . . 7
|
| 17 | 3, 16 | jca 554 |
. . . . . 6
|
| 18 | rabid 3116 |
. . . . . 6
| |
| 19 | 17, 18 | sylibr 224 |
. . . . 5
|
| 20 | 19 | ex 450 |
. . . 4
|
| 21 | 18 | simplbi 476 |
. . . . . . 7
|
| 22 | 21 | adantl 482 |
. . . . . 6
|
| 23 | 18 | simprbi 480 |
. . . . . . . . . 10
|
| 24 | 23 | adantl 482 |
. . . . . . . . 9
|
| 25 | 11 | adantr 481 |
. . . . . . . . . 10
|
| 26 | 22, 13 | syldan 487 |
. . . . . . . . . 10
|
| 27 | 25, 26 | xrltnled 39579 |
. . . . . . . . 9
|
| 28 | 24, 27 | mpbid 222 |
. . . . . . . 8
|
| 29 | 28 | intnand 962 |
. . . . . . 7
|
| 30 | 29, 5 | sylnibr 319 |
. . . . . 6
|
| 31 | 22, 30 | eldifd 3585 |
. . . . 5
|
| 32 | 31 | ex 450 |
. . . 4
|
| 33 | 20, 32 | impbid 202 |
. . 3
|
| 34 | 1, 33 | alrimi 2082 |
. 2
|
| 35 | nfcv 2764 |
. . . 4
| |
| 36 | nfrab1 3122 |
. . . 4
| |
| 37 | 35, 36 | nfdif 3731 |
. . 3
|
| 38 | nfrab1 3122 |
. . 3
| |
| 39 | 37, 38 | dfcleqf 39255 |
. 2
|
| 40 | 34, 39 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-le 10080 |
| This theorem is referenced by: salpreimalegt 40920 |
| Copyright terms: Public domain | W3C validator |