| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posn | Structured version Visualization version Unicode version | ||
| Description: Partial ordering of a singleton. (Contributed by NM, 27-Apr-2009.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| posn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 5050 |
. . . . . 6
| |
| 2 | snprc 4253 |
. . . . . . 7
| |
| 3 | poeq2 5039 |
. . . . . . 7
| |
| 4 | 2, 3 | sylbi 207 |
. . . . . 6
|
| 5 | 1, 4 | mpbiri 248 |
. . . . 5
|
| 6 | 5 | adantl 482 |
. . . 4
|
| 7 | brrelex 5156 |
. . . . 5
| |
| 8 | 7 | stoic1a 1697 |
. . . 4
|
| 9 | 6, 8 | 2thd 255 |
. . 3
|
| 10 | 9 | ex 450 |
. 2
|
| 11 | df-po 5035 |
. . 3
| |
| 12 | breq2 4657 |
. . . . . . . . . . 11
| |
| 13 | 12 | anbi2d 740 |
. . . . . . . . . 10
|
| 14 | breq2 4657 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | imbi12d 334 |
. . . . . . . . 9
|
| 16 | 15 | anbi2d 740 |
. . . . . . . 8
|
| 17 | 16 | ralsng 4218 |
. . . . . . 7
|
| 18 | 17 | ralbidv 2986 |
. . . . . 6
|
| 19 | simpl 473 |
. . . . . . . . . 10
| |
| 20 | breq2 4657 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | syl5ib 234 |
. . . . . . . . 9
|
| 22 | 21 | biantrud 528 |
. . . . . . . 8
|
| 23 | 22 | bicomd 213 |
. . . . . . 7
|
| 24 | 23 | ralsng 4218 |
. . . . . 6
|
| 25 | 18, 24 | bitrd 268 |
. . . . 5
|
| 26 | 25 | ralbidv 2986 |
. . . 4
|
| 27 | breq12 4658 |
. . . . . . 7
| |
| 28 | 27 | anidms 677 |
. . . . . 6
|
| 29 | 28 | notbid 308 |
. . . . 5
|
| 30 | 29 | ralsng 4218 |
. . . 4
|
| 31 | 26, 30 | bitrd 268 |
. . 3
|
| 32 | 11, 31 | syl5bb 272 |
. 2
|
| 33 | 10, 32 | pm2.61d2 172 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: sosn 5188 |
| Copyright terms: Public domain | W3C validator |