MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stoic1a Structured version   Visualization version   Unicode version

Theorem stoic1a 1697
Description: Stoic logic Thema 1 (part a).

The first thema of the four Stoic logic themata, in its basic form, was:

"When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/

We will represent thema 1 as two very similar rules stoic1a 1697 and stoic1b 1698 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.)

Hypothesis
Ref Expression
stoic1.1  |-  ( (
ph  /\  ps )  ->  th )
Assertion
Ref Expression
stoic1a  |-  ( (
ph  /\  -.  th )  ->  -.  ps )

Proof of Theorem stoic1a
StepHypRef Expression
1 stoic1.1 . . 3  |-  ( (
ph  /\  ps )  ->  th )
21ex 450 . 2  |-  ( ph  ->  ( ps  ->  th )
)
32con3dimp 457 1  |-  ( (
ph  /\  -.  th )  ->  -.  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  stoic1b  1698  posn  5187  frsn  5189  relimasn  5488  nssdmovg  6816  iblss  23571  midexlem  25587  colhp  25662  xaddeq0  29518  xrge0npcan  29694  unccur  33392  lindsenlbs  33404  itg2addnclem2  33462  dvasin  33496  ssnel  39204  icccncfext  40100  dirkercncflem1  40320  fourierdlem81  40404  fourierdlem97  40420  volico2  40855
  Copyright terms: Public domain W3C validator