![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic1a | Structured version Visualization version Unicode version |
Description: Stoic logic Thema 1 (part
a).
The first thema of the four Stoic logic themata, in its basic form, was: "When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/ We will represent thema 1 as two very similar rules stoic1a 1697 and stoic1b 1698 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.) |
Ref | Expression |
---|---|
stoic1.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
stoic1a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic1.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 450 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | con3dimp 457 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: stoic1b 1698 posn 5187 frsn 5189 relimasn 5488 nssdmovg 6816 iblss 23571 midexlem 25587 colhp 25662 xaddeq0 29518 xrge0npcan 29694 unccur 33392 lindsenlbs 33404 itg2addnclem2 33462 dvasin 33496 ssnel 39204 icccncfext 40100 dirkercncflem1 40320 fourierdlem81 40404 fourierdlem97 40420 volico2 40855 |
Copyright terms: Public domain | W3C validator |