MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sosn Structured version   Visualization version   Unicode version

Theorem sosn 5188
Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
sosn  |-  ( Rel 
R  ->  ( R  Or  { A }  <->  -.  A R A ) )

Proof of Theorem sosn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsni 4194 . . . . . 6  |-  ( x  e.  { A }  ->  x  =  A )
2 elsni 4194 . . . . . . 7  |-  ( y  e.  { A }  ->  y  =  A )
32eqcomd 2628 . . . . . 6  |-  ( y  e.  { A }  ->  A  =  y )
41, 3sylan9eq 2676 . . . . 5  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  y )
543mix2d 1237 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
x R y  \/  x  =  y  \/  y R x ) )
65rgen2a 2977 . . 3  |-  A. x  e.  { A } A. y  e.  { A }  ( x R y  \/  x  =  y  \/  y R x )
7 df-so 5036 . . 3  |-  ( R  Or  { A }  <->  ( R  Po  { A }  /\  A. x  e. 
{ A } A. y  e.  { A }  ( x R y  \/  x  =  y  \/  y R x ) ) )
86, 7mpbiran2 954 . 2  |-  ( R  Or  { A }  <->  R  Po  { A }
)
9 posn 5187 . 2  |-  ( Rel 
R  ->  ( R  Po  { A }  <->  -.  A R A ) )
108, 9syl5bb 272 1  |-  ( Rel 
R  ->  ( R  Or  { A }  <->  -.  A R A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    e. wcel 1990   A.wral 2912   {csn 4177   class class class wbr 4653    Po wpo 5033    Or wor 5034   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121
This theorem is referenced by:  wesn  5190
  Copyright terms: Public domain W3C validator