MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnebg Structured version   Visualization version   Unicode version

Theorem prnebg 4389
Description: A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.)
Assertion
Ref Expression
prnebg  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  (
( ( A  =/= 
C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  <->  { A ,  B }  =/=  { C ,  D }
) )

Proof of Theorem prnebg
StepHypRef Expression
1 prneimg 4388 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  ->  { A ,  B }  =/=  { C ,  D } ) )
213adant3 1081 . 2  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  (
( ( A  =/= 
C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  ->  { A ,  B }  =/=  { C ,  D } ) )
3 ioran 511 . . . . 5  |-  ( -.  ( ( A  =/= 
C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  <->  ( -.  ( A  =/=  C  /\  A  =/=  D
)  /\  -.  ( B  =/=  C  /\  B  =/=  D ) ) )
4 ianor 509 . . . . . . 7  |-  ( -.  ( A  =/=  C  /\  A  =/=  D
)  <->  ( -.  A  =/=  C  \/  -.  A  =/=  D ) )
5 nne 2798 . . . . . . . 8  |-  ( -.  A  =/=  C  <->  A  =  C )
6 nne 2798 . . . . . . . 8  |-  ( -.  A  =/=  D  <->  A  =  D )
75, 6orbi12i 543 . . . . . . 7  |-  ( ( -.  A  =/=  C  \/  -.  A  =/=  D
)  <->  ( A  =  C  \/  A  =  D ) )
84, 7bitri 264 . . . . . 6  |-  ( -.  ( A  =/=  C  /\  A  =/=  D
)  <->  ( A  =  C  \/  A  =  D ) )
9 ianor 509 . . . . . . 7  |-  ( -.  ( B  =/=  C  /\  B  =/=  D
)  <->  ( -.  B  =/=  C  \/  -.  B  =/=  D ) )
10 nne 2798 . . . . . . . 8  |-  ( -.  B  =/=  C  <->  B  =  C )
11 nne 2798 . . . . . . . 8  |-  ( -.  B  =/=  D  <->  B  =  D )
1210, 11orbi12i 543 . . . . . . 7  |-  ( ( -.  B  =/=  C  \/  -.  B  =/=  D
)  <->  ( B  =  C  \/  B  =  D ) )
139, 12bitri 264 . . . . . 6  |-  ( -.  ( B  =/=  C  /\  B  =/=  D
)  <->  ( B  =  C  \/  B  =  D ) )
148, 13anbi12i 733 . . . . 5  |-  ( ( -.  ( A  =/= 
C  /\  A  =/=  D )  /\  -.  ( B  =/=  C  /\  B  =/=  D ) )  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) ) )
153, 14bitri 264 . . . 4  |-  ( -.  ( ( A  =/= 
C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) ) )
16 anddi 914 . . . . 5  |-  ( ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) )  <->  ( (
( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  D ) )  \/  ( ( A  =  D  /\  B  =  C )  \/  ( A  =  D  /\  B  =  D )
) ) )
17 eqtr3 2643 . . . . . . . . . 10  |-  ( ( A  =  C  /\  B  =  C )  ->  A  =  B )
18 eqneqall 2805 . . . . . . . . . 10  |-  ( A  =  B  ->  ( A  =/=  B  ->  { A ,  B }  =  { C ,  D }
) )
1917, 18syl 17 . . . . . . . . 9  |-  ( ( A  =  C  /\  B  =  C )  ->  ( A  =/=  B  ->  { A ,  B }  =  { C ,  D } ) )
20 preq12 4270 . . . . . . . . . 10  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
2120a1d 25 . . . . . . . . 9  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  =/=  B  ->  { A ,  B }  =  { C ,  D } ) )
2219, 21jaoi 394 . . . . . . . 8  |-  ( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  D ) )  -> 
( A  =/=  B  ->  { A ,  B }  =  { C ,  D } ) )
23 preq12 4270 . . . . . . . . . . 11  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { D ,  C } )
24 prcom 4267 . . . . . . . . . . 11  |-  { D ,  C }  =  { C ,  D }
2523, 24syl6eq 2672 . . . . . . . . . 10  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D } )
2625a1d 25 . . . . . . . . 9  |-  ( ( A  =  D  /\  B  =  C )  ->  ( A  =/=  B  ->  { A ,  B }  =  { C ,  D } ) )
27 eqtr3 2643 . . . . . . . . . 10  |-  ( ( A  =  D  /\  B  =  D )  ->  A  =  B )
2827, 18syl 17 . . . . . . . . 9  |-  ( ( A  =  D  /\  B  =  D )  ->  ( A  =/=  B  ->  { A ,  B }  =  { C ,  D } ) )
2926, 28jaoi 394 . . . . . . . 8  |-  ( ( ( A  =  D  /\  B  =  C )  \/  ( A  =  D  /\  B  =  D ) )  -> 
( A  =/=  B  ->  { A ,  B }  =  { C ,  D } ) )
3022, 29jaoi 394 . . . . . . 7  |-  ( ( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  D )
)  \/  ( ( A  =  D  /\  B  =  C )  \/  ( A  =  D  /\  B  =  D ) ) )  -> 
( A  =/=  B  ->  { A ,  B }  =  { C ,  D } ) )
3130com12 32 . . . . . 6  |-  ( A  =/=  B  ->  (
( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  D )
)  \/  ( ( A  =  D  /\  B  =  C )  \/  ( A  =  D  /\  B  =  D ) ) )  ->  { A ,  B }  =  { C ,  D } ) )
32313ad2ant3 1084 . . . . 5  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  (
( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  D )
)  \/  ( ( A  =  D  /\  B  =  C )  \/  ( A  =  D  /\  B  =  D ) ) )  ->  { A ,  B }  =  { C ,  D } ) )
3316, 32syl5bi 232 . . . 4  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  (
( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
)  ->  { A ,  B }  =  { C ,  D }
) )
3415, 33syl5bi 232 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( -.  ( ( A  =/= 
C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  ->  { A ,  B }  =  { C ,  D } ) )
3534necon1ad 2811 . 2  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( { A ,  B }  =/=  { C ,  D }  ->  ( ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) ) ) )
362, 35impbid 202 1  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  (
( ( A  =/= 
C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  <->  { A ,  B }  =/=  { C ,  D }
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  zlmodzxznm  42286
  Copyright terms: Public domain W3C validator