MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneimg Structured version   Visualization version   Unicode version

Theorem prneimg 4388
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
prneimg  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  ->  { A ,  B }  =/=  { C ,  D } ) )

Proof of Theorem prneimg
StepHypRef Expression
1 preq12bg 4386 . . . . 5  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( { A ,  B }  =  { C ,  D }  <->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) ) ) )
2 orddi 913 . . . . . 6  |-  ( ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) )  <->  ( (
( A  =  C  \/  A  =  D )  /\  ( A  =  C  \/  B  =  C ) )  /\  ( ( B  =  D  \/  A  =  D )  /\  ( B  =  D  \/  B  =  C )
) ) )
3 simpll 790 . . . . . . 7  |-  ( ( ( ( A  =  C  \/  A  =  D )  /\  ( A  =  C  \/  B  =  C )
)  /\  ( ( B  =  D  \/  A  =  D )  /\  ( B  =  D  \/  B  =  C ) ) )  -> 
( A  =  C  \/  A  =  D ) )
4 pm1.4 401 . . . . . . . 8  |-  ( ( B  =  D  \/  B  =  C )  ->  ( B  =  C  \/  B  =  D ) )
54ad2antll 765 . . . . . . 7  |-  ( ( ( ( A  =  C  \/  A  =  D )  /\  ( A  =  C  \/  B  =  C )
)  /\  ( ( B  =  D  \/  A  =  D )  /\  ( B  =  D  \/  B  =  C ) ) )  -> 
( B  =  C  \/  B  =  D ) )
63, 5jca 554 . . . . . 6  |-  ( ( ( ( A  =  C  \/  A  =  D )  /\  ( A  =  C  \/  B  =  C )
)  /\  ( ( B  =  D  \/  A  =  D )  /\  ( B  =  D  \/  B  =  C ) ) )  -> 
( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
) )
72, 6sylbi 207 . . . . 5  |-  ( ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) )  -> 
( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
) )
81, 7syl6bi 243 . . . 4  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
) ) )
9 ianor 509 . . . . . 6  |-  ( -.  ( A  =/=  C  /\  A  =/=  D
)  <->  ( -.  A  =/=  C  \/  -.  A  =/=  D ) )
10 nne 2798 . . . . . . 7  |-  ( -.  A  =/=  C  <->  A  =  C )
11 nne 2798 . . . . . . 7  |-  ( -.  A  =/=  D  <->  A  =  D )
1210, 11orbi12i 543 . . . . . 6  |-  ( ( -.  A  =/=  C  \/  -.  A  =/=  D
)  <->  ( A  =  C  \/  A  =  D ) )
139, 12bitr2i 265 . . . . 5  |-  ( ( A  =  C  \/  A  =  D )  <->  -.  ( A  =/=  C  /\  A  =/=  D
) )
14 ianor 509 . . . . . 6  |-  ( -.  ( B  =/=  C  /\  B  =/=  D
)  <->  ( -.  B  =/=  C  \/  -.  B  =/=  D ) )
15 nne 2798 . . . . . . 7  |-  ( -.  B  =/=  C  <->  B  =  C )
16 nne 2798 . . . . . . 7  |-  ( -.  B  =/=  D  <->  B  =  D )
1715, 16orbi12i 543 . . . . . 6  |-  ( ( -.  B  =/=  C  \/  -.  B  =/=  D
)  <->  ( B  =  C  \/  B  =  D ) )
1814, 17bitr2i 265 . . . . 5  |-  ( ( B  =  C  \/  B  =  D )  <->  -.  ( B  =/=  C  /\  B  =/=  D
) )
1913, 18anbi12i 733 . . . 4  |-  ( ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) )  <->  ( -.  ( A  =/=  C  /\  A  =/=  D
)  /\  -.  ( B  =/=  C  /\  B  =/=  D ) ) )
208, 19syl6ib 241 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( { A ,  B }  =  { C ,  D }  ->  ( -.  ( A  =/=  C  /\  A  =/=  D )  /\  -.  ( B  =/=  C  /\  B  =/=  D
) ) ) )
21 pm4.56 516 . . 3  |-  ( ( -.  ( A  =/= 
C  /\  A  =/=  D )  /\  -.  ( B  =/=  C  /\  B  =/=  D ) )  <->  -.  (
( A  =/=  C  /\  A  =/=  D
)  \/  ( B  =/=  C  /\  B  =/=  D ) ) )
2220, 21syl6ib 241 . 2  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( { A ,  B }  =  { C ,  D }  ->  -.  ( ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) ) ) )
2322necon2ad 2809 1  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  ->  { A ,  B }  =/=  { C ,  D } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  prnebg  4389  symg2bas  17818  m2detleib  20437  umgrvad2edg  26105  usgrexmpldifpr  26150  zlmodzxzldeplem  42287
  Copyright terms: Public domain W3C validator