| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prneimg | Structured version Visualization version Unicode version | ||
| Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
| Ref | Expression |
|---|---|
| prneimg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12bg 4386 |
. . . . 5
| |
| 2 | orddi 913 |
. . . . . 6
| |
| 3 | simpll 790 |
. . . . . . 7
| |
| 4 | pm1.4 401 |
. . . . . . . 8
| |
| 5 | 4 | ad2antll 765 |
. . . . . . 7
|
| 6 | 3, 5 | jca 554 |
. . . . . 6
|
| 7 | 2, 6 | sylbi 207 |
. . . . 5
|
| 8 | 1, 7 | syl6bi 243 |
. . . 4
|
| 9 | ianor 509 |
. . . . . 6
| |
| 10 | nne 2798 |
. . . . . . 7
| |
| 11 | nne 2798 |
. . . . . . 7
| |
| 12 | 10, 11 | orbi12i 543 |
. . . . . 6
|
| 13 | 9, 12 | bitr2i 265 |
. . . . 5
|
| 14 | ianor 509 |
. . . . . 6
| |
| 15 | nne 2798 |
. . . . . . 7
| |
| 16 | nne 2798 |
. . . . . . 7
| |
| 17 | 15, 16 | orbi12i 543 |
. . . . . 6
|
| 18 | 14, 17 | bitr2i 265 |
. . . . 5
|
| 19 | 13, 18 | anbi12i 733 |
. . . 4
|
| 20 | 8, 19 | syl6ib 241 |
. . 3
|
| 21 | pm4.56 516 |
. . 3
| |
| 22 | 20, 21 | syl6ib 241 |
. 2
|
| 23 | 22 | necon2ad 2809 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: prnebg 4389 symg2bas 17818 m2detleib 20437 umgrvad2edg 26105 usgrexmpldifpr 26150 zlmodzxzldeplem 42287 |
| Copyright terms: Public domain | W3C validator |