| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prter3 | Structured version Visualization version Unicode version | ||
| Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| prtlem18.1 |
|
| Ref | Expression |
|---|---|
| prter3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | errel 7751 |
. . 3
| |
| 2 | 1 | adantr 481 |
. 2
|
| 3 | prtlem18.1 |
. . . 4
| |
| 4 | 3 | relopabi 5245 |
. . 3
|
| 5 | 3 | prtlem13 34153 |
. . . . . 6
|
| 6 | simpll 790 |
. . . . . . . . . . . . 13
| |
| 7 | simprl 794 |
. . . . . . . . . . . . . . 15
| |
| 8 | ne0i 3921 |
. . . . . . . . . . . . . . . 16
| |
| 9 | 8 | ad2antll 765 |
. . . . . . . . . . . . . . 15
|
| 10 | eldifsn 4317 |
. . . . . . . . . . . . . . 15
| |
| 11 | 7, 9, 10 | sylanbrc 698 |
. . . . . . . . . . . . . 14
|
| 12 | simplr 792 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | eleqtrrd 2704 |
. . . . . . . . . . . . 13
|
| 14 | simprr 796 |
. . . . . . . . . . . . 13
| |
| 15 | qsel 7826 |
. . . . . . . . . . . . 13
| |
| 16 | 6, 13, 14, 15 | syl3anc 1326 |
. . . . . . . . . . . 12
|
| 17 | 16 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 18 | vex 3203 |
. . . . . . . . . . . 12
| |
| 19 | vex 3203 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | elec 7786 |
. . . . . . . . . . 11
|
| 21 | 17, 20 | syl6bb 276 |
. . . . . . . . . 10
|
| 22 | 21 | anassrs 680 |
. . . . . . . . 9
|
| 23 | 22 | pm5.32da 673 |
. . . . . . . 8
|
| 24 | 23 | rexbidva 3049 |
. . . . . . 7
|
| 25 | simpll 790 |
. . . . . . . . . . . 12
| |
| 26 | simpr 477 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | ercl 7753 |
. . . . . . . . . . 11
|
| 28 | eluni2 4440 |
. . . . . . . . . . 11
| |
| 29 | 27, 28 | sylib 208 |
. . . . . . . . . 10
|
| 30 | 29 | ex 450 |
. . . . . . . . 9
|
| 31 | 30 | pm4.71rd 667 |
. . . . . . . 8
|
| 32 | r19.41v 3089 |
. . . . . . . 8
| |
| 33 | 31, 32 | syl6bbr 278 |
. . . . . . 7
|
| 34 | 24, 33 | bitr4d 271 |
. . . . . 6
|
| 35 | 5, 34 | syl5bb 272 |
. . . . 5
|
| 36 | 35 | adantl 482 |
. . . 4
|
| 37 | 36 | eqbrrdv2 34148 |
. . 3
|
| 38 | 4, 37 | mpanl1 716 |
. 2
|
| 39 | 2, 38 | mpancom 703 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-er 7742 df-ec 7744 df-qs 7748 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |