MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsel Structured version   Visualization version   Unicode version

Theorem qsel 7826
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel  |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R
)

Proof of Theorem qsel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( A /. R )  =  ( A /. R
)
2 eleq2 2690 . . . 4  |-  ( [ x ] R  =  B  ->  ( C  e.  [ x ] R  <->  C  e.  B ) )
3 eqeq1 2626 . . . 4  |-  ( [ x ] R  =  B  ->  ( [
x ] R  =  [ C ] R  <->  B  =  [ C ] R ) )
42, 3imbi12d 334 . . 3  |-  ( [ x ] R  =  B  ->  ( ( C  e.  [ x ] R  ->  [ x ] R  =  [ C ] R )  <->  ( C  e.  B  ->  B  =  [ C ] R
) ) )
5 vex 3203 . . . . . 6  |-  x  e. 
_V
6 elecg 7785 . . . . . 6  |-  ( ( C  e.  [ x ] R  /\  x  e.  _V )  ->  ( C  e.  [ x ] R  <->  x R C ) )
75, 6mpan2 707 . . . . 5  |-  ( C  e.  [ x ] R  ->  ( C  e. 
[ x ] R  <->  x R C ) )
87ibi 256 . . . 4  |-  ( C  e.  [ x ] R  ->  x R C )
9 simpll 790 . . . . . 6  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  R  Er  X )
10 simpr 477 . . . . . 6  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  x R C )
119, 10erthi 7793 . . . . 5  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  [ x ] R  =  [ C ] R )
1211ex 450 . . . 4  |-  ( ( R  Er  X  /\  x  e.  A )  ->  ( x R C  ->  [ x ] R  =  [ C ] R ) )
138, 12syl5 34 . . 3  |-  ( ( R  Er  X  /\  x  e.  A )  ->  ( C  e.  [
x ] R  ->  [ x ] R  =  [ C ] R
) )
141, 4, 13ectocld 7814 . 2  |-  ( ( R  Er  X  /\  B  e.  ( A /. R ) )  -> 
( C  e.  B  ->  B  =  [ C ] R ) )
15143impia 1261 1  |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    Er wer 7739   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-er 7742  df-ec 7744  df-qs 7748
This theorem is referenced by:  frgpnabllem2  18277  prter3  34167
  Copyright terms: Public domain W3C validator