Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem18 Structured version   Visualization version   Unicode version

Theorem prtlem18 34162
Description: Lemma for prter2 34166. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
Assertion
Ref Expression
prtlem18  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  <-> 
z  .~  w )
) )
Distinct variable groups:    v, u, w, x, y, z, A   
v,  .~ , w, z
Allowed substitution hints:    .~ ( x, y, u)

Proof of Theorem prtlem18
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 rspe 3003 . . . . 5  |-  ( ( v  e.  A  /\  ( z  e.  v  /\  w  e.  v ) )  ->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
21expr 643 . . . 4  |-  ( ( v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  ->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) ) )
3 prtlem18.1 . . . . 5  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
43prtlem13 34153 . . . 4  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
52, 4syl6ibr 242 . . 3  |-  ( ( v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  ->  z  .~  w
) )
65a1i 11 . 2  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  ->  z  .~  w
) ) )
73prtlem13 34153 . . 3  |-  ( z  .~  w  <->  E. p  e.  A  ( z  e.  p  /\  w  e.  p ) )
8 prtlem17 34161 . . 3  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( E. p  e.  A  ( z  e.  p  /\  w  e.  p )  ->  w  e.  v ) ) )
97, 8syl7bi 245 . 2  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( z  .~  w  ->  w  e.  v ) ) )
106, 9impbidd 200 1  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  <-> 
z  .~  w )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   {copab 4712   Prt wprt 34156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-prt 34157
This theorem is referenced by:  prtlem19  34163
  Copyright terms: Public domain W3C validator