| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniinqs | Structured version Visualization version Unicode version | ||
| Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin 4457. (Contributed by FL, 25-May-2007.) (Proof shortened by Mario Carneiro, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| uniinqs.1 |
|
| Ref | Expression |
|---|---|
| uniinqs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniin 4457 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | eluni2 4440 |
. . . . . 6
| |
| 4 | eluni2 4440 |
. . . . . 6
| |
| 5 | 3, 4 | anbi12i 733 |
. . . . 5
|
| 6 | elin 3796 |
. . . . 5
| |
| 7 | reeanv 3107 |
. . . . 5
| |
| 8 | 5, 6, 7 | 3bitr4i 292 |
. . . 4
|
| 9 | simp3l 1089 |
. . . . . . 7
| |
| 10 | simp2l 1087 |
. . . . . . . 8
| |
| 11 | inelcm 4032 |
. . . . . . . . . . 11
| |
| 12 | 11 | 3ad2ant3 1084 |
. . . . . . . . . 10
|
| 13 | uniinqs.1 |
. . . . . . . . . . . . . 14
| |
| 14 | 13 | a1i 11 |
. . . . . . . . . . . . 13
|
| 15 | simp1l 1085 |
. . . . . . . . . . . . . 14
| |
| 16 | 15, 10 | sseldd 3604 |
. . . . . . . . . . . . 13
|
| 17 | simp1r 1086 |
. . . . . . . . . . . . . 14
| |
| 18 | simp2r 1088 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 18 | sseldd 3604 |
. . . . . . . . . . . . 13
|
| 20 | 14, 16, 19 | qsdisj 7824 |
. . . . . . . . . . . 12
|
| 21 | 20 | ord 392 |
. . . . . . . . . . 11
|
| 22 | 21 | necon1ad 2811 |
. . . . . . . . . 10
|
| 23 | 12, 22 | mpd 15 |
. . . . . . . . 9
|
| 24 | 23, 18 | eqeltrd 2701 |
. . . . . . . 8
|
| 25 | 10, 24 | elind 3798 |
. . . . . . 7
|
| 26 | elunii 4441 |
. . . . . . 7
| |
| 27 | 9, 25, 26 | syl2anc 693 |
. . . . . 6
|
| 28 | 27 | 3expia 1267 |
. . . . 5
|
| 29 | 28 | rexlimdvva 3038 |
. . . 4
|
| 30 | 8, 29 | syl5bi 232 |
. . 3
|
| 31 | 30 | ssrdv 3609 |
. 2
|
| 32 | 2, 31 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-er 7742 df-ec 7744 df-qs 7748 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |