MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29af2 Structured version   Visualization version   Unicode version

Theorem r19.29af2 3075
Description: A commonly used pattern based on r19.29 3072. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof shortened by OpenAI, 25-Mar-2020.)
Hypotheses
Ref Expression
r19.29af2.p  |-  F/ x ph
r19.29af2.c  |-  F/ x ch
r19.29af2.1  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
r19.29af2.2  |-  ( ph  ->  E. x  e.  A  ps )
Assertion
Ref Expression
r19.29af2  |-  ( ph  ->  ch )

Proof of Theorem r19.29af2
StepHypRef Expression
1 r19.29af2.2 . 2  |-  ( ph  ->  E. x  e.  A  ps )
2 r19.29af2.p . . 3  |-  F/ x ph
3 r19.29af2.c . . 3  |-  F/ x ch
4 r19.29af2.1 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
54exp31 630 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
62, 3, 5rexlimd 3026 . 2  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
71, 6mpd 15 1  |-  ( ph  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   F/wnf 1708    e. wcel 1990   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-ral 2917  df-rex 2918
This theorem is referenced by:  r19.29af  3076  restmetu  22375  aciunf1lem  29462  fprodex01  29571  locfinreflem  29907  esumrnmpt2  30130  esum2dlem  30154  esum2d  30155  esumiun  30156
  Copyright terms: Public domain W3C validator