![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29af2 | Structured version Visualization version Unicode version |
Description: A commonly used pattern based on r19.29 3072. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
r19.29af2.p |
![]() ![]() ![]() ![]() |
r19.29af2.c |
![]() ![]() ![]() ![]() |
r19.29af2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
r19.29af2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
r19.29af2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af2.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | r19.29af2.p |
. . 3
![]() ![]() ![]() ![]() | |
3 | r19.29af2.c |
. . 3
![]() ![]() ![]() ![]() | |
4 | r19.29af2.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | exp31 630 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 3, 5 | rexlimd 3026 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | mpd 15 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-ral 2917 df-rex 2918 |
This theorem is referenced by: r19.29af 3076 restmetu 22375 aciunf1lem 29462 fprodex01 29571 locfinreflem 29907 esumrnmpt2 30130 esum2dlem 30154 esum2d 30155 esumiun 30156 |
Copyright terms: Public domain | W3C validator |