MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restmetu Structured version   Visualization version   Unicode version

Theorem restmetu 22375
Description: The uniform structure generated by the restriction of a metric is its trace. (Contributed by Thierry Arnoux, 18-Dec-2017.)
Assertion
Ref Expression
restmetu  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( (metUnif `  D
)t  ( A  X.  A
) )  =  (metUnif `  ( D  |`  ( A  X.  A ) ) ) )

Proof of Theorem restmetu
Dummy variables  a 
b  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  A  =/=  (/) )
2 psmetres2 22119 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( D  |`  ( A  X.  A ) )  e.  (PsMet `  A )
)
323adant1 1079 . . . 4  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( D  |`  ( A  X.  A
) )  e.  (PsMet `  A ) )
4 oveq2 6658 . . . . . . . 8  |-  ( a  =  b  ->  (
0 [,) a )  =  ( 0 [,) b ) )
54imaeq2d 5466 . . . . . . 7  |-  ( a  =  b  ->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) )  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
65cbvmptv 4750 . . . . . 6  |-  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  =  ( b  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )
76rneqi 5352 . . . . 5  |-  ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  =  ran  ( b  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
87metustfbas 22362 . . . 4  |-  ( ( A  =/=  (/)  /\  ( D  |`  ( A  X.  A ) )  e.  (PsMet `  A )
)  ->  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  e.  ( fBas `  ( A  X.  A ) ) )
91, 3, 8syl2anc 693 . . 3  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  e.  ( fBas `  ( A  X.  A ) ) )
10 fgval 21674 . . 3  |-  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  e.  (
fBas `  ( A  X.  A ) )  -> 
( ( A  X.  A ) filGen ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) ) )  =  { v  e.  ~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } )
119, 10syl 17 . 2  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( ( A  X.  A ) filGen ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) ) )  =  { v  e.  ~P ( A  X.  A
)  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } )
12 metuval 22354 . . 3  |-  ( ( D  |`  ( A  X.  A ) )  e.  (PsMet `  A )  ->  (metUnif `  ( D  |`  ( A  X.  A
) ) )  =  ( ( A  X.  A ) filGen ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) ) ) )
133, 12syl 17 . 2  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  (metUnif `  ( D  |`  ( A  X.  A
) ) )  =  ( ( A  X.  A ) filGen ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) ) ) )
14 fvex 6201 . . . 4  |-  (metUnif `  D
)  e.  _V
153elfvexd 6222 . . . . 5  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  A  e.  _V )
16 xpexg 6960 . . . . 5  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( A  X.  A
)  e.  _V )
1715, 15, 16syl2anc 693 . . . 4  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( A  X.  A )  e.  _V )
18 restval 16087 . . . 4  |-  ( ( (metUnif `  D )  e.  _V  /\  ( A  X.  A )  e. 
_V )  ->  (
(metUnif `  D )t  ( A  X.  A ) )  =  ran  ( v  e.  (metUnif `  D
)  |->  ( v  i^i  ( A  X.  A
) ) ) )
1914, 17, 18sylancr 695 . . 3  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( (metUnif `  D
)t  ( A  X.  A
) )  =  ran  ( v  e.  (metUnif `  D )  |->  ( v  i^i  ( A  X.  A ) ) ) )
20 inss2 3834 . . . . . . . . . . 11  |-  ( v  i^i  ( A  X.  A ) )  C_  ( A  X.  A
)
21 sseq1 3626 . . . . . . . . . . 11  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  (
u  C_  ( A  X.  A )  <->  ( v  i^i  ( A  X.  A
) )  C_  ( A  X.  A ) ) )
2220, 21mpbiri 248 . . . . . . . . . 10  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  u  C_  ( A  X.  A
) )
23 vex 3203 . . . . . . . . . . 11  |-  u  e. 
_V
2423elpw 4164 . . . . . . . . . 10  |-  ( u  e.  ~P ( A  X.  A )  <->  u  C_  ( A  X.  A ) )
2522, 24sylibr 224 . . . . . . . . 9  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  u  e.  ~P ( A  X.  A ) )
2625rexlimivw 3029 . . . . . . . 8  |-  ( E. v  e.  (metUnif `  D
) u  =  ( v  i^i  ( A  X.  A ) )  ->  u  e.  ~P ( A  X.  A
) )
2726adantl 482 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )  ->  u  e.  ~P ( A  X.  A
) )
28 nfv 1843 . . . . . . . . . . . 12  |-  F/ a ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )
29 nfmpt1 4747 . . . . . . . . . . . . . 14  |-  F/_ a
( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
3029nfrn 5368 . . . . . . . . . . . . 13  |-  F/_ a ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
3130nfcri 2758 . . . . . . . . . . . 12  |-  F/ a  w  e.  ran  (
a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
3228, 31nfan 1828 . . . . . . . . . . 11  |-  F/ a ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )
33 nfv 1843 . . . . . . . . . . 11  |-  F/ a  w  C_  v
3432, 33nfan 1828 . . . . . . . . . 10  |-  F/ a ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )  /\  w  C_  v )
35 nfmpt1 4747 . . . . . . . . . . . . 13  |-  F/_ a
( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
3635nfrn 5368 . . . . . . . . . . . 12  |-  F/_ a ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
37 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ a ~P u
3836, 37nfin 3820 . . . . . . . . . . 11  |-  F/_ a
( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )
39 nfcv 2764 . . . . . . . . . . 11  |-  F/_ a (/)
4038, 39nfne 2894 . . . . . . . . . 10  |-  F/ a ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  =/=  (/)
41 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
a  e.  RR+ )
42 ineq1 3807 . . . . . . . . . . . . . . 15  |-  ( w  =  ( `' D " ( 0 [,) a
) )  ->  (
w  i^i  ( A  X.  A ) )  =  ( ( `' D " ( 0 [,) a
) )  i^i  ( A  X.  A ) ) )
4342adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) )  =  ( ( `' D " ( 0 [,) a ) )  i^i  ( A  X.  A ) ) )
44 simp2 1062 . . . . . . . . . . . . . . . 16  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  D  e.  (PsMet `  X ) )
45 psmetf 22111 . . . . . . . . . . . . . . . 16  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
46 ffun 6048 . . . . . . . . . . . . . . . 16  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
47 respreima 6344 . . . . . . . . . . . . . . . 16  |-  ( Fun 
D  ->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) )  =  ( ( `' D " ( 0 [,) a
) )  i^i  ( A  X.  A ) ) )
4844, 45, 46, 474syl 19 . . . . . . . . . . . . . . 15  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) )  =  ( ( `' D "
( 0 [,) a
) )  i^i  ( A  X.  A ) ) )
4948ad6antr 772 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) )  =  ( ( `' D " ( 0 [,) a ) )  i^i  ( A  X.  A ) ) )
5043, 49eqtr4d 2659 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )
51 rspe 3003 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR+  /\  (
w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  ->  E. a  e.  RR+  ( w  i^i  ( A  X.  A
) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
5241, 50, 51syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  ->  E. a  e.  RR+  (
w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
53 vex 3203 . . . . . . . . . . . . . 14  |-  w  e. 
_V
5453inex1 4799 . . . . . . . . . . . . 13  |-  ( w  i^i  ( A  X.  A ) )  e. 
_V
55 eqid 2622 . . . . . . . . . . . . . 14  |-  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  =  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )
5655elrnmpt 5372 . . . . . . . . . . . . 13  |-  ( ( w  i^i  ( A  X.  A ) )  e.  _V  ->  (
( w  i^i  ( A  X.  A ) )  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  <->  E. a  e.  RR+  (
w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) ) )
5754, 56ax-mp 5 . . . . . . . . . . . 12  |-  ( ( w  i^i  ( A  X.  A ) )  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  <->  E. a  e.  RR+  (
w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
5852, 57sylibr 224 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) )  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) ) )
59 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  ->  w  C_  v )
60 ssinss1 3841 . . . . . . . . . . . . 13  |-  ( w 
C_  v  ->  (
w  i^i  ( A  X.  A ) )  C_  v )
6159, 60syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) ) 
C_  v )
62 inss2 3834 . . . . . . . . . . . . 13  |-  ( w  i^i  ( A  X.  A ) )  C_  ( A  X.  A
)
6362a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A ) )
64 pweq 4161 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  ~P u  =  ~P (
v  i^i  ( A  X.  A ) ) )
6564eleq2d 2687 . . . . . . . . . . . . . . 15  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  (
( w  i^i  ( A  X.  A ) )  e.  ~P u  <->  ( w  i^i  ( A  X.  A
) )  e.  ~P ( v  i^i  ( A  X.  A ) ) ) )
6654elpw 4164 . . . . . . . . . . . . . . 15  |-  ( ( w  i^i  ( A  X.  A ) )  e.  ~P ( v  i^i  ( A  X.  A ) )  <->  ( w  i^i  ( A  X.  A
) )  C_  (
v  i^i  ( A  X.  A ) ) )
6765, 66syl6bb 276 . . . . . . . . . . . . . 14  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  (
( w  i^i  ( A  X.  A ) )  e.  ~P u  <->  ( w  i^i  ( A  X.  A
) )  C_  (
v  i^i  ( A  X.  A ) ) ) )
68 ssin 3835 . . . . . . . . . . . . . 14  |-  ( ( ( w  i^i  ( A  X.  A ) ) 
C_  v  /\  (
w  i^i  ( A  X.  A ) )  C_  ( A  X.  A
) )  <->  ( w  i^i  ( A  X.  A
) )  C_  (
v  i^i  ( A  X.  A ) ) )
6967, 68syl6bbr 278 . . . . . . . . . . . . 13  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  (
( w  i^i  ( A  X.  A ) )  e.  ~P u  <->  ( (
w  i^i  ( A  X.  A ) )  C_  v  /\  ( w  i^i  ( A  X.  A
) )  C_  ( A  X.  A ) ) ) )
7069ad5antlr 771 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( w  i^i  ( A  X.  A
) )  e.  ~P u 
<->  ( ( w  i^i  ( A  X.  A
) )  C_  v  /\  ( w  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A ) ) ) )
7161, 63, 70mpbir2and 957 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) )  e.  ~P u )
72 inelcm 4032 . . . . . . . . . . 11  |-  ( ( ( w  i^i  ( A  X.  A ) )  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  /\  ( w  i^i  ( A  X.  A
) )  e.  ~P u )  ->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) )
7358, 71, 72syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  =/=  (/) )
74 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )  /\  w  C_  v )  ->  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )
75 eqid 2622 . . . . . . . . . . . . 13  |-  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
7675elrnmpt 5372 . . . . . . . . . . . 12  |-  ( w  e.  _V  ->  (
w  e.  ran  (
a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  <->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) ) )
7753, 76ax-mp 5 . . . . . . . . . . 11  |-  ( w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  <->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
7874, 77sylib 208 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )  /\  w  C_  v )  ->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
7934, 40, 73, 78r19.29af2 3075 . . . . . . . . 9  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )  /\  w  C_  v )  ->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) )
80 ssn0 3976 . . . . . . . . . . . . . 14  |-  ( ( A  C_  X  /\  A  =/=  (/) )  ->  X  =/=  (/) )
8180ancoms 469 . . . . . . . . . . . . 13  |-  ( ( A  =/=  (/)  /\  A  C_  X )  ->  X  =/=  (/) )
82813adant2 1080 . . . . . . . . . . . 12  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  X  =/=  (/) )
83 metuel 22369 . . . . . . . . . . . 12  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( v  e.  (metUnif `  D )  <->  ( v  C_  ( X  X.  X )  /\  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  v
) ) )
8482, 44, 83syl2anc 693 . . . . . . . . . . 11  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( v  e.  (metUnif `  D )  <->  ( v  C_  ( X  X.  X )  /\  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  v
) ) )
8584simplbda 654 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  v
)
8685adantr 481 . . . . . . . . 9  |-  ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) w 
C_  v )
8779, 86r19.29a 3078 . . . . . . . 8  |-  ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  ->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) )
8887r19.29an 3077 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )  ->  ( ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  =/=  (/) )
8927, 88jca 554 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )  ->  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )
90 simprl 794 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  u  e.  ~P ( A  X.  A
) )
9190elpwid 4170 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  u  C_  ( A  X.  A ) )
92 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  A  C_  X
)
93 xpss12 5225 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  A  C_  X )  -> 
( A  X.  A
)  C_  ( X  X.  X ) )
9492, 92, 93syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( A  X.  A )  C_  ( X  X.  X ) )
9591, 94sstrd 3613 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  u  C_  ( X  X.  X ) )
96 difssd 3738 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( ( X  X.  X )  \ 
( A  X.  A
) )  C_  ( X  X.  X ) )
9795, 96unssd 3789 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  C_  ( X  X.  X ) )
98 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
b  e.  RR+ )
99 eqidd 2623 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' D "
( 0 [,) b
) )  =  ( `' D " ( 0 [,) b ) ) )
1004imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  ( `' D " ( 0 [,) a ) )  =  ( `' D " ( 0 [,) b
) ) )
101100eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
( `' D "
( 0 [,) b
) )  =  ( `' D " ( 0 [,) a ) )  <-> 
( `' D "
( 0 [,) b
) )  =  ( `' D " ( 0 [,) b ) ) ) )
102101rspcev 3309 . . . . . . . . . . . 12  |-  ( ( b  e.  RR+  /\  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) b
) ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) a
) ) )
10398, 99, 102syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) a
) ) )
10444ad4antr 768 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  ->  D  e.  (PsMet `  X
) )
105 cnvexg 7112 . . . . . . . . . . . 12  |-  ( D  e.  (PsMet `  X
)  ->  `' D  e.  _V )
106 imaexg 7103 . . . . . . . . . . . 12  |-  ( `' D  e.  _V  ->  ( `' D " ( 0 [,) b ) )  e.  _V )
10775elrnmpt 5372 . . . . . . . . . . . 12  |-  ( ( `' D " ( 0 [,) b ) )  e.  _V  ->  (
( `' D "
( 0 [,) b
) )  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  <->  E. a  e.  RR+  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) a
) ) ) )
108104, 105, 106, 1074syl 19 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( `' D " ( 0 [,) b
) )  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  <->  E. a  e.  RR+  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) a
) ) ) )
109103, 108mpbird 247 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' D "
( 0 [,) b
) )  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )
110 cnvimass 5485 . . . . . . . . . . . . . . . 16  |-  ( `' D " ( 0 [,) b ) ) 
C_  dom  D
111 fdm 6051 . . . . . . . . . . . . . . . . 17  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
11245, 111syl 17 . . . . . . . . . . . . . . . 16  |-  ( D  e.  (PsMet `  X
)  ->  dom  D  =  ( X  X.  X
) )
113110, 112syl5sseq 3653 . . . . . . . . . . . . . . 15  |-  ( D  e.  (PsMet `  X
)  ->  ( `' D " ( 0 [,) b ) )  C_  ( X  X.  X
) )
114104, 113syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' D "
( 0 [,) b
) )  C_  ( X  X.  X ) )
115 ssdif0 3942 . . . . . . . . . . . . . 14  |-  ( ( `' D " ( 0 [,) b ) ) 
C_  ( X  X.  X )  <->  ( ( `' D " ( 0 [,) b ) ) 
\  ( X  X.  X ) )  =  (/) )
116114, 115sylib 208 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( `' D " ( 0 [,) b
) )  \  ( X  X.  X ) )  =  (/) )
117 0ss 3972 . . . . . . . . . . . . 13  |-  (/)  C_  u
118116, 117syl6eqss 3655 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( `' D " ( 0 [,) b
) )  \  ( X  X.  X ) ) 
C_  u )
119 respreima 6344 . . . . . . . . . . . . . 14  |-  ( Fun 
D  ->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) )  =  ( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) )
120104, 45, 46, 1194syl 19 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) )  =  ( ( `' D " ( 0 [,) b ) )  i^i  ( A  X.  A ) ) )
121 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
122 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
v  e.  ~P u
)
123122elpwid 4170 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
v  C_  u )
124121, 123eqsstr3d 3640 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) )  C_  u )
125120, 124eqsstr3d 3640 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) 
C_  u )
126118, 125unssd 3789 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( ( `' D " ( 0 [,) b ) ) 
\  ( X  X.  X ) )  u.  ( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) )  C_  u )
127 ssundif 4052 . . . . . . . . . . . 12  |-  ( ( `' D " ( 0 [,) b ) ) 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  <->  ( ( `' D " ( 0 [,) b ) ) 
\  u )  C_  ( ( X  X.  X )  \  ( A  X.  A ) ) )
128 difcom 4053 . . . . . . . . . . . 12  |-  ( ( ( `' D "
( 0 [,) b
) )  \  u
)  C_  ( ( X  X.  X )  \ 
( A  X.  A
) )  <->  ( ( `' D " ( 0 [,) b ) ) 
\  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  C_  u )
129 difdif2 3884 . . . . . . . . . . . . 13  |-  ( ( `' D " ( 0 [,) b ) ) 
\  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  =  ( ( ( `' D " ( 0 [,) b ) ) 
\  ( X  X.  X ) )  u.  ( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) )
130129sseq1i 3629 . . . . . . . . . . . 12  |-  ( ( ( `' D "
( 0 [,) b
) )  \  (
( X  X.  X
)  \  ( A  X.  A ) ) ) 
C_  u  <->  ( (
( `' D "
( 0 [,) b
) )  \  ( X  X.  X ) )  u.  ( ( `' D " ( 0 [,) b ) )  i^i  ( A  X.  A ) ) ) 
C_  u )
131127, 128, 1303bitri 286 . . . . . . . . . . 11  |-  ( ( `' D " ( 0 [,) b ) ) 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  <->  ( ( ( `' D " ( 0 [,) b ) ) 
\  ( X  X.  X ) )  u.  ( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) )  C_  u )
132126, 131sylibr 224 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' D "
( 0 [,) b
) )  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) )
133 sseq1 3626 . . . . . . . . . . 11  |-  ( w  =  ( `' D " ( 0 [,) b
) )  ->  (
w  C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  <->  ( `' D " ( 0 [,) b
) )  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) ) )
134133rspcev 3309 . . . . . . . . . 10  |-  ( ( ( `' D "
( 0 [,) b
) )  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  /\  ( `' D " ( 0 [,) b ) ) 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) w 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) ) )
135109, 132, 134syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) )
136 elin 3796 . . . . . . . . . . . . . 14  |-  ( v  e.  ( ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  <-> 
( v  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  /\  v  e.  ~P u ) )
137 vex 3203 . . . . . . . . . . . . . . . 16  |-  v  e. 
_V
1386elrnmpt 5372 . . . . . . . . . . . . . . . 16  |-  ( v  e.  _V  ->  (
v  e.  ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  <->  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) ) )
139137, 138ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( v  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  <->  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )
140139anbi1i 731 . . . . . . . . . . . . . 14  |-  ( ( v  e.  ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  /\  v  e.  ~P u )  <->  ( E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) )  /\  v  e. 
~P u ) )
141 ancom 466 . . . . . . . . . . . . . 14  |-  ( ( E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) )  /\  v  e.  ~P u
)  <->  ( v  e. 
~P u  /\  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) ) ) )
142136, 140, 1413bitri 286 . . . . . . . . . . . . 13  |-  ( v  e.  ( ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  <-> 
( v  e.  ~P u  /\  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) ) ) )
143142exbii 1774 . . . . . . . . . . . 12  |-  ( E. v  v  e.  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  <->  E. v
( v  e.  ~P u  /\  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) ) ) )
144 n0 3931 . . . . . . . . . . . 12  |-  ( ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  =/=  (/) 
<->  E. v  v  e.  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u ) )
145 df-rex 2918 . . . . . . . . . . . 12  |-  ( E. v  e.  ~P  u E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) )  <->  E. v
( v  e.  ~P u  /\  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) ) ) )
146143, 144, 1453bitr4i 292 . . . . . . . . . . 11  |-  ( ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  =/=  (/) 
<->  E. v  e.  ~P  u E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
147146biimpi 206 . . . . . . . . . 10  |-  ( ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  =/=  (/)  ->  E. v  e.  ~P  u E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
148147ad2antll 765 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  E. v  e.  ~P  u E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
149135, 148r19.29vva 3081 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) )
15082adantr 481 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  X  =/=  (/) )
15144adantr 481 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  D  e.  (PsMet `  X ) )
152 metuel 22369 . . . . . . . . 9  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) )  e.  (metUnif `  D
)  <->  ( ( u  u.  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  C_  ( X  X.  X
)  /\  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) w 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) ) ) ) )
153150, 151, 152syl2anc 693 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( ( u  u.  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  e.  (metUnif `  D )  <->  ( ( u  u.  (
( X  X.  X
)  \  ( A  X.  A ) ) ) 
C_  ( X  X.  X )  /\  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) ) ) )
15497, 149, 153mpbir2and 957 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  e.  (metUnif `  D
) )
155 indir 3875 . . . . . . . . 9  |-  ( ( u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) )  i^i  ( A  X.  A ) )  =  ( ( u  i^i  ( A  X.  A
) )  u.  (
( ( X  X.  X )  \  ( A  X.  A ) )  i^i  ( A  X.  A ) ) )
156 incom 3805 . . . . . . . . . . 11  |-  ( ( A  X.  A )  i^i  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  =  ( ( ( X  X.  X )  \ 
( A  X.  A
) )  i^i  ( A  X.  A ) )
157 disjdif 4040 . . . . . . . . . . 11  |-  ( ( A  X.  A )  i^i  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  =  (/)
158156, 157eqtr3i 2646 . . . . . . . . . 10  |-  ( ( ( X  X.  X
)  \  ( A  X.  A ) )  i^i  ( A  X.  A
) )  =  (/)
159158uneq2i 3764 . . . . . . . . 9  |-  ( ( u  i^i  ( A  X.  A ) )  u.  ( ( ( X  X.  X ) 
\  ( A  X.  A ) )  i^i  ( A  X.  A
) ) )  =  ( ( u  i^i  ( A  X.  A
) )  u.  (/) )
160 un0 3967 . . . . . . . . 9  |-  ( ( u  i^i  ( A  X.  A ) )  u.  (/) )  =  ( u  i^i  ( A  X.  A ) )
161155, 159, 1603eqtri 2648 . . . . . . . 8  |-  ( ( u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) )  i^i  ( A  X.  A ) )  =  ( u  i^i  ( A  X.  A ) )
162 df-ss 3588 . . . . . . . . 9  |-  ( u 
C_  ( A  X.  A )  <->  ( u  i^i  ( A  X.  A
) )  =  u )
16391, 162sylib 208 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( u  i^i  ( A  X.  A
) )  =  u )
164161, 163syl5req 2669 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  u  =  ( ( u  u.  (
( X  X.  X
)  \  ( A  X.  A ) ) )  i^i  ( A  X.  A ) ) )
165 ineq1 3807 . . . . . . . . 9  |-  ( v  =  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  ->  ( v  i^i  ( A  X.  A
) )  =  ( ( u  u.  (
( X  X.  X
)  \  ( A  X.  A ) ) )  i^i  ( A  X.  A ) ) )
166165eqeq2d 2632 . . . . . . . 8  |-  ( v  =  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  ->  ( u  =  ( v  i^i  ( A  X.  A
) )  <->  u  =  ( ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  i^i  ( A  X.  A ) ) ) )
167166rspcev 3309 . . . . . . 7  |-  ( ( ( u  u.  (
( X  X.  X
)  \  ( A  X.  A ) ) )  e.  (metUnif `  D
)  /\  u  =  ( ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  i^i  ( A  X.  A ) ) )  ->  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )
168154, 164, 167syl2anc 693 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  E. v  e.  (metUnif `  D ) u  =  ( v  i^i  ( A  X.  A ) ) )
16989, 168impbida 877 . . . . 5  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) )  <->  ( u  e.  ~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) ) )
170 eqid 2622 . . . . . . 7  |-  ( v  e.  (metUnif `  D
)  |->  ( v  i^i  ( A  X.  A
) ) )  =  ( v  e.  (metUnif `  D )  |->  ( v  i^i  ( A  X.  A ) ) )
171170elrnmpt 5372 . . . . . 6  |-  ( u  e.  _V  ->  (
u  e.  ran  (
v  e.  (metUnif `  D
)  |->  ( v  i^i  ( A  X.  A
) ) )  <->  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) ) )
17223, 171ax-mp 5 . . . . 5  |-  ( u  e.  ran  ( v  e.  (metUnif `  D
)  |->  ( v  i^i  ( A  X.  A
) ) )  <->  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )
173 pweq 4161 . . . . . . . 8  |-  ( v  =  u  ->  ~P v  =  ~P u
)
174173ineq2d 3814 . . . . . . 7  |-  ( v  =  u  ->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P v )  =  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u ) )
175174neeq1d 2853 . . . . . 6  |-  ( v  =  u  ->  (
( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P v )  =/=  (/) 
<->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )
176175elrab 3363 . . . . 5  |-  ( u  e.  { v  e. 
~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P v )  =/=  (/) }  <->  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )
177169, 172, 1763bitr4g 303 . . . 4  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( u  e. 
ran  ( v  e.  (metUnif `  D )  |->  ( v  i^i  ( A  X.  A ) ) )  <->  u  e.  { v  e.  ~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } ) )
178177eqrdv 2620 . . 3  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ran  ( v  e.  (metUnif `  D )  |->  ( v  i^i  ( A  X.  A ) ) )  =  { v  e.  ~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } )
17919, 178eqtrd 2656 . 2  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( (metUnif `  D
)t  ( A  X.  A
) )  =  {
v  e.  ~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } )
18011, 13, 1793eqtr4rd 2667 1  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( (metUnif `  D
)t  ( A  X.  A
) )  =  (metUnif `  ( D  |`  ( A  X.  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   RR*cxr 10073   RR+crp 11832   [,)cico 12177   ↾t crest 16081  PsMetcpsmet 19730   fBascfbas 19734   filGencfg 19735  metUnifcmetu 19737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-rp 11833  df-ico 12181  df-rest 16083  df-psmet 19738  df-fbas 19743  df-fg 19744  df-metu 19745
This theorem is referenced by:  reust  23169  qqhucn  30036
  Copyright terms: Public domain W3C validator