| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29d2r | Structured version Visualization version Unicode version | ||
| Description: Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| Ref | Expression |
|---|---|
| r19.29d2r.1 |
|
| r19.29d2r.2 |
|
| Ref | Expression |
|---|---|
| r19.29d2r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29d2r.1 |
. . 3
| |
| 2 | r19.29d2r.2 |
. . 3
| |
| 3 | r19.29 3072 |
. . 3
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. 2
|
| 5 | r19.29 3072 |
. . 3
| |
| 6 | 5 | reximi 3011 |
. 2
|
| 7 | 4, 6 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: r19.29vva 3081 ucnima 22085 tgisline 25522 r19.29ffa 29320 rnmpt2ss 29473 xrofsup 29533 icoreresf 33200 |
| Copyright terms: Public domain | W3C validator |