| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgisline | Structured version Visualization version Unicode version | ||
| Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p |
|
| tglineelsb2.i |
|
| tglineelsb2.l |
|
| tglineelsb2.g |
|
| tgisline.1 |
|
| Ref | Expression |
|---|---|
| tgisline |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p |
. . . . . 6
| |
| 2 | tglineelsb2.l |
. . . . . 6
| |
| 3 | tglineelsb2.i |
. . . . . 6
| |
| 4 | tglineelsb2.g |
. . . . . . 7
| |
| 5 | 4 | adantr 481 |
. . . . . 6
|
| 6 | simprl 794 |
. . . . . 6
| |
| 7 | simprr 796 |
. . . . . . 7
| |
| 8 | 7 | eldifad 3586 |
. . . . . 6
|
| 9 | eldifsn 4317 |
. . . . . . . . 9
| |
| 10 | 7, 9 | sylib 208 |
. . . . . . . 8
|
| 11 | 10 | simprd 479 |
. . . . . . 7
|
| 12 | 11 | necomd 2849 |
. . . . . 6
|
| 13 | 1, 2, 3, 5, 6, 8, 12 | tglngval 25446 |
. . . . 5
|
| 14 | 13, 12 | jca 554 |
. . . 4
|
| 15 | 14 | ralrimivva 2971 |
. . 3
|
| 16 | tgisline.1 |
. . . . 5
| |
| 17 | 1, 2, 3 | tglng 25441 |
. . . . . . 7
|
| 18 | 4, 17 | syl 17 |
. . . . . 6
|
| 19 | 18 | rneqd 5353 |
. . . . 5
|
| 20 | 16, 19 | eleqtrd 2703 |
. . . 4
|
| 21 | eqid 2622 |
. . . . . 6
| |
| 22 | 21 | elrnmpt2g 6772 |
. . . . 5
|
| 23 | 16, 22 | syl 17 |
. . . 4
|
| 24 | 20, 23 | mpbid 222 |
. . 3
|
| 25 | 15, 24 | r19.29d2r 3080 |
. 2
|
| 26 | difss 3737 |
. . . 4
| |
| 27 | simpr 477 |
. . . . . . 7
| |
| 28 | simpll 790 |
. . . . . . 7
| |
| 29 | 27, 28 | eqtr4d 2659 |
. . . . . 6
|
| 30 | simplr 792 |
. . . . . 6
| |
| 31 | 29, 30 | jca 554 |
. . . . 5
|
| 32 | 31 | reximi 3011 |
. . . 4
|
| 33 | ssrexv 3667 |
. . . 4
| |
| 34 | 26, 32, 33 | mpsyl 68 |
. . 3
|
| 35 | 34 | reximi 3011 |
. 2
|
| 36 | 25, 35 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-trkg 25352 |
| This theorem is referenced by: tglnne 25523 tglndim0 25524 tglinethru 25531 tglnne0 25535 tglnpt2 25536 footex 25613 opptgdim2 25637 |
| Copyright terms: Public domain | W3C validator |