MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pval Structured version   Visualization version   Unicode version

Theorem r1pval 23916
Description: Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e  |-  E  =  (rem1p `  R )
r1pval.p  |-  P  =  (Poly1 `  R )
r1pval.b  |-  B  =  ( Base `  P
)
r1pval.q  |-  Q  =  (quot1p `  R )
r1pval.t  |-  .x.  =  ( .r `  P )
r1pval.m  |-  .-  =  ( -g `  P )
Assertion
Ref Expression
r1pval  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F E G )  =  ( F 
.-  ( ( F Q G )  .x.  G ) ) )

Proof of Theorem r1pval
Dummy variables  b 
f  g  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1pval.p . . . . 5  |-  P  =  (Poly1 `  R )
2 r1pval.b . . . . 5  |-  B  =  ( Base `  P
)
31, 2elbasfv 15920 . . . 4  |-  ( F  e.  B  ->  R  e.  _V )
43adantr 481 . . 3  |-  ( ( F  e.  B  /\  G  e.  B )  ->  R  e.  _V )
5 r1pval.e . . . 4  |-  E  =  (rem1p `  R )
6 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
76, 1syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
87fveq2d 6195 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  (Poly1 `  r ) )  =  ( Base `  P
) )
98, 2syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  (Poly1 `  r ) )  =  B )
109csbeq1d 3540 . . . . . 6  |-  ( r  =  R  ->  [_ ( Base `  (Poly1 `  r ) )  /  b ]_ (
f  e.  b ,  g  e.  b  |->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) ) )  =  [_ B  /  b ]_ (
f  e.  b ,  g  e.  b  |->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) ) ) )
11 fvex 6201 . . . . . . . . 9  |-  ( Base `  P )  e.  _V
122, 11eqeltri 2697 . . . . . . . 8  |-  B  e. 
_V
1312a1i 11 . . . . . . 7  |-  ( r  =  R  ->  B  e.  _V )
14 simpr 477 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  b  =  B )
157fveq2d 6195 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( -g `  (Poly1 `  r ) )  =  ( -g `  P
) )
16 r1pval.m . . . . . . . . . . 11  |-  .-  =  ( -g `  P )
1715, 16syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  ( -g `  (Poly1 `  r ) )  =  .-  )
18 eqidd 2623 . . . . . . . . . 10  |-  ( r  =  R  ->  f  =  f )
197fveq2d 6195 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( .r `  (Poly1 `  r ) )  =  ( .r `  P ) )
20 r1pval.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  P )
2119, 20syl6eqr 2674 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  (Poly1 `  r ) )  =  .x.  )
22 fveq2 6191 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (quot1p `  r )  =  (quot1p `  R ) )
23 r1pval.q . . . . . . . . . . . . 13  |-  Q  =  (quot1p `  R )
2422, 23syl6eqr 2674 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (quot1p `  r )  =  Q )
2524oveqd 6667 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
f (quot1p `  r ) g )  =  ( f Q g ) )
26 eqidd 2623 . . . . . . . . . . 11  |-  ( r  =  R  ->  g  =  g )
2721, 25, 26oveq123d 6671 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g )  =  ( ( f Q g )  .x.  g ) )
2817, 18, 27oveq123d 6671 . . . . . . . . 9  |-  ( r  =  R  ->  (
f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) )  =  ( f 
.-  ( ( f Q g )  .x.  g ) ) )
2928adantr 481 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r ) g ) ( .r `  (Poly1 `  r ) ) g ) )  =  ( f  .-  ( ( f Q g ) 
.x.  g ) ) )
3014, 14, 29mpt2eq123dv 6717 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  B )  ->  ( f  e.  b ,  g  e.  b 
|->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r ) g ) ( .r `  (Poly1 `  r ) ) g ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( f  .-  (
( f Q g )  .x.  g ) ) ) )
3113, 30csbied 3560 . . . . . 6  |-  ( r  =  R  ->  [_ B  /  b ]_ (
f  e.  b ,  g  e.  b  |->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( f  .-  ( ( f Q g ) 
.x.  g ) ) ) )
3210, 31eqtrd 2656 . . . . 5  |-  ( r  =  R  ->  [_ ( Base `  (Poly1 `  r ) )  /  b ]_ (
f  e.  b ,  g  e.  b  |->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( f  .-  ( ( f Q g ) 
.x.  g ) ) ) )
33 df-r1p 23893 . . . . 5  |- rem1p  =  (
r  e.  _V  |->  [_ ( Base `  (Poly1 `  r
) )  /  b ]_ ( f  e.  b ,  g  e.  b 
|->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r ) g ) ( .r `  (Poly1 `  r ) ) g ) ) ) )
3412, 12mpt2ex 7247 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  ( f 
.-  ( ( f Q g )  .x.  g ) ) )  e.  _V
3532, 33, 34fvmpt 6282 . . . 4  |-  ( R  e.  _V  ->  (rem1p `  R )  =  ( f  e.  B , 
g  e.  B  |->  ( f  .-  ( ( f Q g ) 
.x.  g ) ) ) )
365, 35syl5eq 2668 . . 3  |-  ( R  e.  _V  ->  E  =  ( f  e.  B ,  g  e.  B  |->  ( f  .-  ( ( f Q g )  .x.  g
) ) ) )
374, 36syl 17 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  E  =  ( f  e.  B ,  g  e.  B  |->  ( f 
.-  ( ( f Q g )  .x.  g ) ) ) )
38 simpl 473 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
39 oveq12 6659 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f Q g )  =  ( F Q G ) )
40 simpr 477 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
4139, 40oveq12d 6668 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f Q g )  .x.  g
)  =  ( ( F Q G ) 
.x.  G ) )
4238, 41oveq12d 6668 . . 3  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f  .-  (
( f Q g )  .x.  g ) )  =  ( F 
.-  ( ( F Q G )  .x.  G ) ) )
4342adantl 482 . 2  |-  ( ( ( F  e.  B  /\  G  e.  B
)  /\  ( f  =  F  /\  g  =  G ) )  -> 
( f  .-  (
( f Q g )  .x.  g ) )  =  ( F 
.-  ( ( F Q G )  .x.  G ) ) )
44 simpl 473 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  F  e.  B )
45 simpr 477 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  G  e.  B )
46 ovexd 6680 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F  .-  (
( F Q G )  .x.  G ) )  e.  _V )
4737, 43, 44, 45, 46ovmpt2d 6788 1  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F E G )  =  ( F 
.-  ( ( F Q G )  .x.  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   .rcmulr 15942   -gcsg 17424  Poly1cpl1 19547  quot1pcq1p 23887  rem1pcr1p 23888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-r1p 23893
This theorem is referenced by:  r1pcl  23917  r1pdeglt  23918  r1pid  23919  dvdsr1p  23921  ig1pdvds  23936
  Copyright terms: Public domain W3C validator