| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbii | Structured version Visualization version Unicode version | ||
| Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| raleqbii.1 |
|
| raleqbii.2 |
|
| Ref | Expression |
|---|---|
| raleqbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbii.1 |
. . . 4
| |
| 2 | 1 | eleq2i 2693 |
. . 3
|
| 3 | raleqbii.2 |
. . 3
| |
| 4 | 2, 3 | imbi12i 340 |
. 2
|
| 5 | 4 | ralbii2 2978 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-ral 2917 |
| This theorem is referenced by: wfrlem5 7419 ply1coe 19666 ordtbaslem 20992 iscusp2 22106 isrgr 26455 frrlem5 31784 elghomOLD 33686 iscrngo2 33796 tendoset 36047 comptiunov2i 37998 |
| Copyright terms: Public domain | W3C validator |