![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbii | Structured version Visualization version Unicode version |
Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
raleqbii.1 |
![]() ![]() ![]() ![]() |
raleqbii.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
raleqbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbii.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | eleq2i 2693 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | raleqbii.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | imbi12i 340 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | ralbii2 2978 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-ral 2917 |
This theorem is referenced by: wfrlem5 7419 ply1coe 19666 ordtbaslem 20992 iscusp2 22106 isrgr 26455 frrlem5 31784 elghomOLD 33686 iscrngo2 33796 tendoset 36047 comptiunov2i 37998 |
Copyright terms: Public domain | W3C validator |