MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbaslem Structured version   Visualization version   Unicode version

Theorem ordtbaslem 20992
Description: Lemma for ordtbas 20996. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
Assertion
Ref Expression
ordtbaslem  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  A )
Distinct variable groups:    x, y, R    x, X, y
Allowed substitution hints:    A( x, y)

Proof of Theorem ordtbaslem
Dummy variables  a 
b  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 1043 . . . . . . . . . . . . 13  |-  ( ( y  e.  X  /\  a  e.  X  /\  b  e.  X )  <->  ( a  e.  X  /\  b  e.  X  /\  y  e.  X )
)
2 ordtval.1 . . . . . . . . . . . . . 14  |-  X  =  dom  R
32tsrlemax 17220 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
y  e.  X  /\  a  e.  X  /\  b  e.  X )
)  ->  ( y R if ( a R b ,  b ,  a )  <->  ( y R a  \/  y R b ) ) )
41, 3sylan2br 493 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X  /\  y  e.  X )
)  ->  ( y R if ( a R b ,  b ,  a )  <->  ( y R a  \/  y R b ) ) )
543exp2 1285 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  ( a  e.  X  ->  ( b  e.  X  ->  ( y  e.  X  ->  (
y R if ( a R b ,  b ,  a )  <-> 
( y R a  \/  y R b ) ) ) ) ) )
65imp42 620 . . . . . . . . . 10  |-  ( ( ( R  e.  TosetRel  /\  ( a  e.  X  /\  b  e.  X
) )  /\  y  e.  X )  ->  (
y R if ( a R b ,  b ,  a )  <-> 
( y R a  \/  y R b ) ) )
76notbid 308 . . . . . . . . 9  |-  ( ( ( R  e.  TosetRel  /\  ( a  e.  X  /\  b  e.  X
) )  /\  y  e.  X )  ->  ( -.  y R if ( a R b ,  b ,  a )  <->  -.  ( y R a  \/  y R b ) ) )
8 ioran 511 . . . . . . . . 9  |-  ( -.  ( y R a  \/  y R b )  <->  ( -.  y R a  /\  -.  y R b ) )
97, 8syl6bb 276 . . . . . . . 8  |-  ( ( ( R  e.  TosetRel  /\  ( a  e.  X  /\  b  e.  X
) )  /\  y  e.  X )  ->  ( -.  y R if ( a R b ,  b ,  a )  <-> 
( -.  y R a  /\  -.  y R b ) ) )
109rabbidva 3188 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  =  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) } )
11 ifcl 4130 . . . . . . . . . 10  |-  ( ( b  e.  X  /\  a  e.  X )  ->  if ( a R b ,  b ,  a )  e.  X
)
1211ancoms 469 . . . . . . . . 9  |-  ( ( a  e.  X  /\  b  e.  X )  ->  if ( a R b ,  b ,  a )  e.  X
)
1312adantl 482 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  if (
a R b ,  b ,  a )  e.  X )
14 dmexg 7097 . . . . . . . . . . . 12  |-  ( R  e.  TosetRel  ->  dom  R  e.  _V )
152, 14syl5eqel 2705 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  X  e.  _V )
1615adantr 481 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  X  e.  _V )
17 rabexg 4812 . . . . . . . . . 10  |-  ( X  e.  _V  ->  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  _V )
1816, 17syl 17 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  _V )
1910, 18eqeltrd 2701 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  _V )
20 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
21 breq2 4657 . . . . . . . . . . . 12  |-  ( x  =  if ( a R b ,  b ,  a )  -> 
( y R x  <-> 
y R if ( a R b ,  b ,  a ) ) )
2221notbid 308 . . . . . . . . . . 11  |-  ( x  =  if ( a R b ,  b ,  a )  -> 
( -.  y R x  <->  -.  y R if ( a R b ,  b ,  a ) ) )
2322rabbidv 3189 . . . . . . . . . 10  |-  ( x  =  if ( a R b ,  b ,  a )  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) } )
2420, 23elrnmpt1s 5373 . . . . . . . . 9  |-  ( ( if ( a R b ,  b ,  a )  e.  X  /\  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  _V )  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
25 ordtval.2 . . . . . . . . 9  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
2624, 25syl6eleqr 2712 . . . . . . . 8  |-  ( ( if ( a R b ,  b ,  a )  e.  X  /\  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  _V )  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  A )
2713, 19, 26syl2anc 693 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  A )
2810, 27eqeltrrd 2702 . . . . . 6  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A )
2928ralrimivva 2971 . . . . 5  |-  ( R  e.  TosetRel  ->  A. a  e.  X  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A )
30 rabexg 4812 . . . . . . . 8  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  y R a }  e.  _V )
3115, 30syl 17 . . . . . . 7  |-  ( R  e.  TosetRel  ->  { y  e.  X  |  -.  y R a }  e.  _V )
3231ralrimivw 2967 . . . . . 6  |-  ( R  e.  TosetRel  ->  A. a  e.  X  { y  e.  X  |  -.  y R a }  e.  _V )
33 breq2 4657 . . . . . . . . . 10  |-  ( x  =  a  ->  (
y R x  <->  y R
a ) )
3433notbid 308 . . . . . . . . 9  |-  ( x  =  a  ->  ( -.  y R x  <->  -.  y R a ) )
3534rabbidv 3189 . . . . . . . 8  |-  ( x  =  a  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R a } )
3635cbvmptv 4750 . . . . . . 7  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( a  e.  X  |->  { y  e.  X  |  -.  y R a } )
37 ineq1 3807 . . . . . . . . . 10  |-  ( z  =  { y  e.  X  |  -.  y R a }  ->  ( z  i^i  { y  e.  X  |  -.  y R b } )  =  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  y R b } ) )
38 inrab 3899 . . . . . . . . . 10  |-  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  y R b } )  =  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }
3937, 38syl6eq 2672 . . . . . . . . 9  |-  ( z  =  { y  e.  X  |  -.  y R a }  ->  ( z  i^i  { y  e.  X  |  -.  y R b } )  =  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) } )
4039eleq1d 2686 . . . . . . . 8  |-  ( z  =  { y  e.  X  |  -.  y R a }  ->  ( ( z  i^i  {
y  e.  X  |  -.  y R b } )  e.  A  <->  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A ) )
4140ralbidv 2986 . . . . . . 7  |-  ( z  =  { y  e.  X  |  -.  y R a }  ->  ( A. b  e.  X  ( z  i^i  {
y  e.  X  |  -.  y R b } )  e.  A  <->  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A ) )
4236, 41ralrnmpt 6368 . . . . . 6  |-  ( A. a  e.  X  {
y  e.  X  |  -.  y R a }  e.  _V  ->  ( A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. b  e.  X  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A  <->  A. a  e.  X  A. b  e.  X  {
y  e.  X  | 
( -.  y R a  /\  -.  y R b ) }  e.  A ) )
4332, 42syl 17 . . . . 5  |-  ( R  e.  TosetRel  ->  ( A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. b  e.  X  ( z  i^i  {
y  e.  X  |  -.  y R b } )  e.  A  <->  A. a  e.  X  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A ) )
4429, 43mpbird 247 . . . 4  |-  ( R  e.  TosetRel  ->  A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. b  e.  X  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A
)
45 rabexg 4812 . . . . . . . 8  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  y R b }  e.  _V )
4615, 45syl 17 . . . . . . 7  |-  ( R  e.  TosetRel  ->  { y  e.  X  |  -.  y R b }  e.  _V )
4746ralrimivw 2967 . . . . . 6  |-  ( R  e.  TosetRel  ->  A. b  e.  X  { y  e.  X  |  -.  y R b }  e.  _V )
48 breq2 4657 . . . . . . . . . 10  |-  ( x  =  b  ->  (
y R x  <->  y R
b ) )
4948notbid 308 . . . . . . . . 9  |-  ( x  =  b  ->  ( -.  y R x  <->  -.  y R b ) )
5049rabbidv 3189 . . . . . . . 8  |-  ( x  =  b  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R b } )
5150cbvmptv 4750 . . . . . . 7  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( b  e.  X  |->  { y  e.  X  |  -.  y R b } )
52 ineq2 3808 . . . . . . . 8  |-  ( w  =  { y  e.  X  |  -.  y R b }  ->  ( z  i^i  w )  =  ( z  i^i 
{ y  e.  X  |  -.  y R b } ) )
5352eleq1d 2686 . . . . . . 7  |-  ( w  =  { y  e.  X  |  -.  y R b }  ->  ( ( z  i^i  w
)  e.  A  <->  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A
) )
5451, 53ralrnmpt 6368 . . . . . 6  |-  ( A. b  e.  X  {
y  e.  X  |  -.  y R b }  e.  _V  ->  ( A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w )  e.  A  <->  A. b  e.  X  ( z  i^i  {
y  e.  X  |  -.  y R b } )  e.  A ) )
5547, 54syl 17 . . . . 5  |-  ( R  e.  TosetRel  ->  ( A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w
)  e.  A  <->  A. b  e.  X  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A
) )
5655ralbidv 2986 . . . 4  |-  ( R  e.  TosetRel  ->  ( A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w )  e.  A  <->  A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. b  e.  X  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A
) )
5744, 56mpbird 247 . . 3  |-  ( R  e.  TosetRel  ->  A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w
)  e.  A )
5825raleqi 3142 . . . 4  |-  ( A. w  e.  A  (
z  i^i  w )  e.  A  <->  A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w )  e.  A )
5925, 58raleqbii 2990 . . 3  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  <->  A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w
)  e.  A )
6057, 59sylibr 224 . 2  |-  ( R  e.  TosetRel  ->  A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A )
61 pwexg 4850 . . . . 5  |-  ( X  e.  _V  ->  ~P X  e.  _V )
6215, 61syl 17 . . . 4  |-  ( R  e.  TosetRel  ->  ~P X  e. 
_V )
63 ssrab2 3687 . . . . . . . 8  |-  { y  e.  X  |  -.  y R x }  C_  X
6415adantr 481 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  x  e.  X )  ->  X  e.  _V )
65 elpw2g 4827 . . . . . . . . 9  |-  ( X  e.  _V  ->  ( { y  e.  X  |  -.  y R x }  e.  ~P X  <->  { y  e.  X  |  -.  y R x }  C_  X ) )
6664, 65syl 17 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  x  e.  X )  ->  ( { y  e.  X  |  -.  y R x }  e.  ~P X  <->  { y  e.  X  |  -.  y R x }  C_  X ) )
6763, 66mpbiri 248 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  x  e.  X )  ->  { y  e.  X  |  -.  y R x }  e.  ~P X )
6867, 20fmptd 6385 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) : X --> ~P X
)
69 frn 6053 . . . . . 6  |-  ( ( x  e.  X  |->  { y  e.  X  |  -.  y R x }
) : X --> ~P X  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) 
C_  ~P X )
7068, 69syl 17 . . . . 5  |-  ( R  e.  TosetRel  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) 
C_  ~P X )
7125, 70syl5eqss 3649 . . . 4  |-  ( R  e.  TosetRel  ->  A  C_  ~P X )
7262, 71ssexd 4805 . . 3  |-  ( R  e.  TosetRel  ->  A  e.  _V )
73 inficl 8331 . . 3  |-  ( A  e.  _V  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  <->  ( fi `  A )  =  A ) )
7472, 73syl 17 . 2  |-  ( R  e.  TosetRel  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  <->  ( fi `  A )  =  A ) )
7560, 74mpbid 222 1  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888   ficfi 8316    TosetRel ctsr 17199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-ps 17200  df-tsr 17201
This theorem is referenced by:  ordtbas2  20995
  Copyright terms: Public domain W3C validator